Yifeng Zhang , Hangxi Liu , Feixue Gao , Xiaoli Tan , Yawen Cai , Baowei Hu , Qifei Huang , Ming Fang , Xiangke Wang
{"title":"mof和COFs光催化在CO2还原、H2生成和环境处理中的应用","authors":"Yifeng Zhang , Hangxi Liu , Feixue Gao , Xiaoli Tan , Yawen Cai , Baowei Hu , Qifei Huang , Ming Fang , Xiangke Wang","doi":"10.1016/j.enchem.2022.100078","DOIUrl":null,"url":null,"abstract":"<div><p><span>Photocatalysis has been widely studied because it can use inexhaustible solar energy as an energy source while solving the problems of fossil fuel depletion and environmental pollution facing the 21st century. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), with many advantages such as high physical/chemical stability, tunable bandgap, structural diversity, large specific surface area, etc., are considered important propellants for building better photocatalytic platforms and achieving breakthroughs. This review outlines the applications of MOFs<span> and COFs for photocatalysis in CO</span></span><sub>2</sub> reduction, H<sub>2</sub> generation, and environmental pollution treatment, and elucidates the relevant photocatalytic mechanisms. In particular, the methods and mechanisms for improving the photocatalytic performance of MOFs and COFs are summarized and discussed from the three aspects. Finally, the current limitations, challenges, perspectives and future development opportunities of COFs/MOFs and COF-/MOF-based photocatalysts are summarized and prospected.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"4 4","pages":"Article 100078"},"PeriodicalIF":22.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"211","resultStr":"{\"title\":\"Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment\",\"authors\":\"Yifeng Zhang , Hangxi Liu , Feixue Gao , Xiaoli Tan , Yawen Cai , Baowei Hu , Qifei Huang , Ming Fang , Xiangke Wang\",\"doi\":\"10.1016/j.enchem.2022.100078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Photocatalysis has been widely studied because it can use inexhaustible solar energy as an energy source while solving the problems of fossil fuel depletion and environmental pollution facing the 21st century. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), with many advantages such as high physical/chemical stability, tunable bandgap, structural diversity, large specific surface area, etc., are considered important propellants for building better photocatalytic platforms and achieving breakthroughs. This review outlines the applications of MOFs<span> and COFs for photocatalysis in CO</span></span><sub>2</sub> reduction, H<sub>2</sub> generation, and environmental pollution treatment, and elucidates the relevant photocatalytic mechanisms. In particular, the methods and mechanisms for improving the photocatalytic performance of MOFs and COFs are summarized and discussed from the three aspects. Finally, the current limitations, challenges, perspectives and future development opportunities of COFs/MOFs and COF-/MOF-based photocatalysts are summarized and prospected.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"4 4\",\"pages\":\"Article 100078\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"211\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778022000100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778022000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment
Photocatalysis has been widely studied because it can use inexhaustible solar energy as an energy source while solving the problems of fossil fuel depletion and environmental pollution facing the 21st century. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), with many advantages such as high physical/chemical stability, tunable bandgap, structural diversity, large specific surface area, etc., are considered important propellants for building better photocatalytic platforms and achieving breakthroughs. This review outlines the applications of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental pollution treatment, and elucidates the relevant photocatalytic mechanisms. In particular, the methods and mechanisms for improving the photocatalytic performance of MOFs and COFs are summarized and discussed from the three aspects. Finally, the current limitations, challenges, perspectives and future development opportunities of COFs/MOFs and COF-/MOF-based photocatalysts are summarized and prospected.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage