{"title":"原子散射作为导电表面电子-声子相互作用的探针","authors":"J.R. Manson , G. Benedek , Salvador Miret-Artés","doi":"10.1016/j.surfrep.2022.100552","DOIUrl":null,"url":null,"abstract":"<div><p><span>An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering<span> of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas<span>, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant </span></span></span><em>λ</em><span>. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components </span><em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub> defined by the relationship <em>λ</em> = 〈<em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the <em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to <em>λ</em> and for simple metals, metal overlayers, and other kinds of conducting surfaces values of <em>λ</em> are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant <em>λ</em> shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 2","pages":"Article 100552"},"PeriodicalIF":8.2000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces\",\"authors\":\"J.R. Manson , G. Benedek , Salvador Miret-Artés\",\"doi\":\"10.1016/j.surfrep.2022.100552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering<span> of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas<span>, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant </span></span></span><em>λ</em><span>. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components </span><em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub> defined by the relationship <em>λ</em> = 〈<em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the <em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to <em>λ</em> and for simple metals, metal overlayers, and other kinds of conducting surfaces values of <em>λ</em> are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant <em>λ</em> shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.</p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"77 2\",\"pages\":\"Article 100552\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572922000012\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572922000012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces
An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant λ. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components λQ,ν defined by the relationship λ = 〈λQ,ν〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the λQ,ν, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to λ and for simple metals, metal overlayers, and other kinds of conducting surfaces values of λ are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant λ shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.