{"title":"高效AgVO3/WO3光催化剂n-n异质结用于可见光诱导降解抗生素","authors":"Khalid A. Alzahrani , Adel A. Ismail","doi":"10.1016/j.jiec.2023.04.016","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, WO<sub>3</sub> NPs were fabricated using a facile hydrothermal method assisted by polyvinylpyrrolidone (PVP) for the first time, and AgVO<sub>3</sub> with different weight percentages (3%, 6%, 9% and 12%) was uniformly distributed on the surface of mesoporous WO<sub>3</sub> by impregnation - calcination processes to construct n-n heterojunction AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposites. The obtained AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposites were utilized for the effective Ciprofloxacin (CIP) degradation during visible illumination. The XRD and TEM investigations verified the formation of AgVO<sub>3</sub> and WO<sub>3</sub> in a monoclinic crystal structure with a particle size of 40 nm. XPS and TEM measurements evidenced the existence of Ag<sup>o</sup> and Ag<sup>+</sup> in the heterostructure AgVO<sub>3</sub>/WO<sub>3</sub> system. 9%AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposite exhibited larger photocatalytic performance, i.e., 100% with 120 min of illumination, than the other nanocomposite photocatalysts. The apparent rate constant of 9% AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposite (0.0162 min<sup>−1</sup>) was enhanced 18 times greater than the WO<sub>3</sub> NPs (0.0009 min<sup>−1</sup>). The efficient photocatalytic performance could correlate with the close contact between AgVO<sub>3</sub> and WO<sub>3</sub> NPs, which enhanced the visible light absorption and efficacious separation of the carriers during degradation reactions. The AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposite obeyed the S-scheme mechanism for charge transfer to achieve promising redox abilities in both AgVO<sub>3</sub> and WO<sub>3</sub>. The optimized 9% AgVO<sub>3</sub>/WO<sub>3</sub> photocatalyst showed high reusability and photostability for five consecutive runs without loss its efficiency. This study provides a new mechanism for addressing highly effective nanocomposites with excellent photocatalytic ability that exhibit practical applications in the environmental remediation of antibiotics.</p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"124 ","pages":"Pages 270-278"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Highly efficient AgVO3/WO3 photocatalyst n-n heterojunction toward visible-light induced degradation antibiotic\",\"authors\":\"Khalid A. Alzahrani , Adel A. Ismail\",\"doi\":\"10.1016/j.jiec.2023.04.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, WO<sub>3</sub> NPs were fabricated using a facile hydrothermal method assisted by polyvinylpyrrolidone (PVP) for the first time, and AgVO<sub>3</sub> with different weight percentages (3%, 6%, 9% and 12%) was uniformly distributed on the surface of mesoporous WO<sub>3</sub> by impregnation - calcination processes to construct n-n heterojunction AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposites. The obtained AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposites were utilized for the effective Ciprofloxacin (CIP) degradation during visible illumination. The XRD and TEM investigations verified the formation of AgVO<sub>3</sub> and WO<sub>3</sub> in a monoclinic crystal structure with a particle size of 40 nm. XPS and TEM measurements evidenced the existence of Ag<sup>o</sup> and Ag<sup>+</sup> in the heterostructure AgVO<sub>3</sub>/WO<sub>3</sub> system. 9%AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposite exhibited larger photocatalytic performance, i.e., 100% with 120 min of illumination, than the other nanocomposite photocatalysts. The apparent rate constant of 9% AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposite (0.0162 min<sup>−1</sup>) was enhanced 18 times greater than the WO<sub>3</sub> NPs (0.0009 min<sup>−1</sup>). The efficient photocatalytic performance could correlate with the close contact between AgVO<sub>3</sub> and WO<sub>3</sub> NPs, which enhanced the visible light absorption and efficacious separation of the carriers during degradation reactions. The AgVO<sub>3</sub>/WO<sub>3</sub> nanocomposite obeyed the S-scheme mechanism for charge transfer to achieve promising redox abilities in both AgVO<sub>3</sub> and WO<sub>3</sub>. The optimized 9% AgVO<sub>3</sub>/WO<sub>3</sub> photocatalyst showed high reusability and photostability for five consecutive runs without loss its efficiency. This study provides a new mechanism for addressing highly effective nanocomposites with excellent photocatalytic ability that exhibit practical applications in the environmental remediation of antibiotics.</p></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"124 \",\"pages\":\"Pages 270-278\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X23002332\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X23002332","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In the present work, WO3 NPs were fabricated using a facile hydrothermal method assisted by polyvinylpyrrolidone (PVP) for the first time, and AgVO3 with different weight percentages (3%, 6%, 9% and 12%) was uniformly distributed on the surface of mesoporous WO3 by impregnation - calcination processes to construct n-n heterojunction AgVO3/WO3 nanocomposites. The obtained AgVO3/WO3 nanocomposites were utilized for the effective Ciprofloxacin (CIP) degradation during visible illumination. The XRD and TEM investigations verified the formation of AgVO3 and WO3 in a monoclinic crystal structure with a particle size of 40 nm. XPS and TEM measurements evidenced the existence of Ago and Ag+ in the heterostructure AgVO3/WO3 system. 9%AgVO3/WO3 nanocomposite exhibited larger photocatalytic performance, i.e., 100% with 120 min of illumination, than the other nanocomposite photocatalysts. The apparent rate constant of 9% AgVO3/WO3 nanocomposite (0.0162 min−1) was enhanced 18 times greater than the WO3 NPs (0.0009 min−1). The efficient photocatalytic performance could correlate with the close contact between AgVO3 and WO3 NPs, which enhanced the visible light absorption and efficacious separation of the carriers during degradation reactions. The AgVO3/WO3 nanocomposite obeyed the S-scheme mechanism for charge transfer to achieve promising redox abilities in both AgVO3 and WO3. The optimized 9% AgVO3/WO3 photocatalyst showed high reusability and photostability for five consecutive runs without loss its efficiency. This study provides a new mechanism for addressing highly effective nanocomposites with excellent photocatalytic ability that exhibit practical applications in the environmental remediation of antibiotics.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.