Xiuxin Xia , Mingyang Wang , Yan Shi, Zhifei Huang, Jingjing Liu, Hong Men, Hairui Fang
{"title":"食品领域白色可降解和不可降解塑料的鉴别:动态残差网络与高光谱技术相结合","authors":"Xiuxin Xia , Mingyang Wang , Yan Shi, Zhifei Huang, Jingjing Liu, Hong Men, Hairui Fang","doi":"10.1016/j.saa.2023.122686","DOIUrl":null,"url":null,"abstract":"<div><p>In the food field, with the improvement of people's health and environmental protection awareness, degradable plastics have become a trend to replace non-degradable plastics. However, their appearance is very similar, making it difficult to distinguish them. This work proposed a rapid identification method for white non-degradable and degradable plastics. Firstly, a hyperspectral imaging system was used to collect the hyperspectral images of the plastics in visible and near-infrared bands (380–1038 nm). Secondly, a residual network (ResNet) was designed according to the characteristics of hyperspectral information. Finally, a dynamic convolution module was introduced into the ResNet to establish a dynamic residual network (Dy-ResNet) to adaptively mine the data features and realize the classification of the degradable and non-degradable plastics. Dy-ResNet had better classification performance than the other classical deep learning methods. The classification accuracy of the degradable and non-degradable plastics was 99.06%. In conclusion, hyperspectral imaging technology was combined with Dy-ResNet to identify the white non-degradable and degradable plastics effectively.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"296 ","pages":"Article 122686"},"PeriodicalIF":4.3000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of white degradable and non-degradable plastics in food field: A dynamic residual network coupled with hyperspectral technology\",\"authors\":\"Xiuxin Xia , Mingyang Wang , Yan Shi, Zhifei Huang, Jingjing Liu, Hong Men, Hairui Fang\",\"doi\":\"10.1016/j.saa.2023.122686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the food field, with the improvement of people's health and environmental protection awareness, degradable plastics have become a trend to replace non-degradable plastics. However, their appearance is very similar, making it difficult to distinguish them. This work proposed a rapid identification method for white non-degradable and degradable plastics. Firstly, a hyperspectral imaging system was used to collect the hyperspectral images of the plastics in visible and near-infrared bands (380–1038 nm). Secondly, a residual network (ResNet) was designed according to the characteristics of hyperspectral information. Finally, a dynamic convolution module was introduced into the ResNet to establish a dynamic residual network (Dy-ResNet) to adaptively mine the data features and realize the classification of the degradable and non-degradable plastics. Dy-ResNet had better classification performance than the other classical deep learning methods. The classification accuracy of the degradable and non-degradable plastics was 99.06%. In conclusion, hyperspectral imaging technology was combined with Dy-ResNet to identify the white non-degradable and degradable plastics effectively.</p></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"296 \",\"pages\":\"Article 122686\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142523003712\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142523003712","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Identification of white degradable and non-degradable plastics in food field: A dynamic residual network coupled with hyperspectral technology
In the food field, with the improvement of people's health and environmental protection awareness, degradable plastics have become a trend to replace non-degradable plastics. However, their appearance is very similar, making it difficult to distinguish them. This work proposed a rapid identification method for white non-degradable and degradable plastics. Firstly, a hyperspectral imaging system was used to collect the hyperspectral images of the plastics in visible and near-infrared bands (380–1038 nm). Secondly, a residual network (ResNet) was designed according to the characteristics of hyperspectral information. Finally, a dynamic convolution module was introduced into the ResNet to establish a dynamic residual network (Dy-ResNet) to adaptively mine the data features and realize the classification of the degradable and non-degradable plastics. Dy-ResNet had better classification performance than the other classical deep learning methods. The classification accuracy of the degradable and non-degradable plastics was 99.06%. In conclusion, hyperspectral imaging technology was combined with Dy-ResNet to identify the white non-degradable and degradable plastics effectively.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.