控制人红细胞离子转运的研究。2跨膜电位、外表面电位和细胞内pH对22Na外排的影响。

Acta biologica et medica Germanica Pub Date : 1982-01-01
I Bernhardt, R Glaser
{"title":"控制人红细胞离子转运的研究。2跨膜电位、外表面电位和细胞内pH对22Na外排的影响。","authors":"I Bernhardt,&nbsp;R Glaser","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The rate constant of the Na+ efflux of human erythrocytes in isotonic solutions of various ionic strength varied over NaCl concentration was measured. The Na+ efflux remained constant over a wide range of ionic strength. Only under conditions where the transmembrane potential was near O mV, a local minimum could be detected. The rate constant of the ouabain-insensitive part of the Na+ efflux exhibited a strong increase at reduced exterior ionic strength. When reducing the extracellular NaCl concentration and at the same time equivalently increasing the extracellular KCl concentration in solutions of physiological ionic strength, a reduction of the rate constant of the Na+ efflux was found. It was established that an increase of the intracellular pH increases the rate constant of the Na+ efflux. A change of transmembrane potential from -7 to 52 mV at constant intracellular pH had no influence on the Na+ efflux. The change of the exterior surface potential of erythrocytes by preincubation with neuraminidase had no influence on the Na+ efflux in the range of the ionic strength studied.</p>","PeriodicalId":6985,"journal":{"name":"Acta biologica et medica Germanica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on the control of ion transport in human erythrocytes. II. Influence of transmembrane potential, exterior surface potential and intracellular pH on the 22Na efflux.\",\"authors\":\"I Bernhardt,&nbsp;R Glaser\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rate constant of the Na+ efflux of human erythrocytes in isotonic solutions of various ionic strength varied over NaCl concentration was measured. The Na+ efflux remained constant over a wide range of ionic strength. Only under conditions where the transmembrane potential was near O mV, a local minimum could be detected. The rate constant of the ouabain-insensitive part of the Na+ efflux exhibited a strong increase at reduced exterior ionic strength. When reducing the extracellular NaCl concentration and at the same time equivalently increasing the extracellular KCl concentration in solutions of physiological ionic strength, a reduction of the rate constant of the Na+ efflux was found. It was established that an increase of the intracellular pH increases the rate constant of the Na+ efflux. A change of transmembrane potential from -7 to 52 mV at constant intracellular pH had no influence on the Na+ efflux. The change of the exterior surface potential of erythrocytes by preincubation with neuraminidase had no influence on the Na+ efflux in the range of the ionic strength studied.</p>\",\"PeriodicalId\":6985,\"journal\":{\"name\":\"Acta biologica et medica Germanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biologica et medica Germanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biologica et medica Germanica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测定了人红细胞在不同离子强度等渗溶液中Na+流出速率常数随NaCl浓度的变化。在很宽的离子强度范围内,Na+外流保持恒定。只有当跨膜电位接近0 mV时,才能检测到局部最小值。外离子强度降低时,Na+外排不敏感部分的速率常数明显增加。在生理离子强度的溶液中,降低胞外NaCl浓度,同时等效提高胞外KCl浓度,可以降低Na+外排的速率常数。结果表明,胞内pH值的升高使Na+外排速率常数增大。在恒定的细胞内pH下,跨膜电位从-7 mV变化到52 mV对Na+外排没有影响。在研究的离子强度范围内,神经氨酸酶对红细胞外表面电位的改变对Na+外排没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigations on the control of ion transport in human erythrocytes. II. Influence of transmembrane potential, exterior surface potential and intracellular pH on the 22Na efflux.

The rate constant of the Na+ efflux of human erythrocytes in isotonic solutions of various ionic strength varied over NaCl concentration was measured. The Na+ efflux remained constant over a wide range of ionic strength. Only under conditions where the transmembrane potential was near O mV, a local minimum could be detected. The rate constant of the ouabain-insensitive part of the Na+ efflux exhibited a strong increase at reduced exterior ionic strength. When reducing the extracellular NaCl concentration and at the same time equivalently increasing the extracellular KCl concentration in solutions of physiological ionic strength, a reduction of the rate constant of the Na+ efflux was found. It was established that an increase of the intracellular pH increases the rate constant of the Na+ efflux. A change of transmembrane potential from -7 to 52 mV at constant intracellular pH had no influence on the Na+ efflux. The change of the exterior surface potential of erythrocytes by preincubation with neuraminidase had no influence on the Na+ efflux in the range of the ionic strength studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信