Christopher E. Shuck, Kimberly Ventura-Martinez, Adam Goad, Simge Uzun, Mikhail Shekhirev, Yury Gogotsi*
{"title":"MAX和MXene的安全合成:降低合成过程中风险的指南","authors":"Christopher E. Shuck, Kimberly Ventura-Martinez, Adam Goad, Simge Uzun, Mikhail Shekhirev, Yury Gogotsi*","doi":"10.1021/acs.chas.1c00051","DOIUrl":null,"url":null,"abstract":"<p >MXenes are proven to be promising materials for a wide variety of applications, from electrochemical energy storage to environmental remediation, leading to their increasing popularity in research. With an influx of new researchers focused on MXenes, it is increasingly important to ensure the safe and reliable production of these materials. Herein, we describe the safe synthesis of MXenes, from their precursors (MAX) to the final product (delaminated MXene), focusing on HF-based etching approaches. Using the synthesis of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene as an example, we discuss safety risks associated with each step of the procedure and demonstrate necessary precautions for the safe, reproducible, and reliable synthesis of MXenes. Finally, we overview the most updated research on MXene safety from a cytotoxicity aspect.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"28 5","pages":"326–338"},"PeriodicalIF":2.9000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.chas.1c00051","citationCount":"64","resultStr":"{\"title\":\"Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis\",\"authors\":\"Christopher E. Shuck, Kimberly Ventura-Martinez, Adam Goad, Simge Uzun, Mikhail Shekhirev, Yury Gogotsi*\",\"doi\":\"10.1021/acs.chas.1c00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >MXenes are proven to be promising materials for a wide variety of applications, from electrochemical energy storage to environmental remediation, leading to their increasing popularity in research. With an influx of new researchers focused on MXenes, it is increasingly important to ensure the safe and reliable production of these materials. Herein, we describe the safe synthesis of MXenes, from their precursors (MAX) to the final product (delaminated MXene), focusing on HF-based etching approaches. Using the synthesis of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene as an example, we discuss safety risks associated with each step of the procedure and demonstrate necessary precautions for the safe, reproducible, and reliable synthesis of MXenes. Finally, we overview the most updated research on MXene safety from a cytotoxicity aspect.</p>\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":\"28 5\",\"pages\":\"326–338\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acs.chas.1c00051\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chas.1c00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.1c00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis
MXenes are proven to be promising materials for a wide variety of applications, from electrochemical energy storage to environmental remediation, leading to their increasing popularity in research. With an influx of new researchers focused on MXenes, it is increasingly important to ensure the safe and reliable production of these materials. Herein, we describe the safe synthesis of MXenes, from their precursors (MAX) to the final product (delaminated MXene), focusing on HF-based etching approaches. Using the synthesis of Ti3C2Tx MXene as an example, we discuss safety risks associated with each step of the procedure and demonstrate necessary precautions for the safe, reproducible, and reliable synthesis of MXenes. Finally, we overview the most updated research on MXene safety from a cytotoxicity aspect.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.