{"title":"全氟和多氟烷基物质(PFAS)的生物降解研究进展","authors":"Zhiming Zhang , Dibyendu Sarkar , Jayanta Kumar Biswas , Rupali Datta","doi":"10.1016/j.biortech.2021.126223","DOIUrl":null,"url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals widely manufactured for industrial and commercial applications in the past decades due to their remarkable stability as well as hydrophobic and lipophobic nature. PFAS species have been recognized as emerging environmental contaminants of concern due to their toxicity and environmental persistence, thereby attracting intensive research seeking effective technologies for their removal from the environment. The objective of this review is to provide a thorough analysis of the biodegradation of PFAS in multiple environmental matrices and offer a future outlook. By discussing targeted PFAS species, degradation intermediates, degradation efficiencies, and microbial species, a comprehensive summary of the known microbial species and their degradation pathways are presented. The biodegradation pathways for different types of PFAS species are summarized in two major categories, biodegradation with and without the cleavage of C-F bond. Existing uncertainties and future research directions for PFAS biodegradation are provided.</p></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"344 ","pages":"Article 126223"},"PeriodicalIF":9.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review\",\"authors\":\"Zhiming Zhang , Dibyendu Sarkar , Jayanta Kumar Biswas , Rupali Datta\",\"doi\":\"10.1016/j.biortech.2021.126223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals widely manufactured for industrial and commercial applications in the past decades due to their remarkable stability as well as hydrophobic and lipophobic nature. PFAS species have been recognized as emerging environmental contaminants of concern due to their toxicity and environmental persistence, thereby attracting intensive research seeking effective technologies for their removal from the environment. The objective of this review is to provide a thorough analysis of the biodegradation of PFAS in multiple environmental matrices and offer a future outlook. By discussing targeted PFAS species, degradation intermediates, degradation efficiencies, and microbial species, a comprehensive summary of the known microbial species and their degradation pathways are presented. The biodegradation pathways for different types of PFAS species are summarized in two major categories, biodegradation with and without the cleavage of C-F bond. Existing uncertainties and future research directions for PFAS biodegradation are provided.</p></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"344 \",\"pages\":\"Article 126223\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852421015650\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852421015650","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals widely manufactured for industrial and commercial applications in the past decades due to their remarkable stability as well as hydrophobic and lipophobic nature. PFAS species have been recognized as emerging environmental contaminants of concern due to their toxicity and environmental persistence, thereby attracting intensive research seeking effective technologies for their removal from the environment. The objective of this review is to provide a thorough analysis of the biodegradation of PFAS in multiple environmental matrices and offer a future outlook. By discussing targeted PFAS species, degradation intermediates, degradation efficiencies, and microbial species, a comprehensive summary of the known microbial species and their degradation pathways are presented. The biodegradation pathways for different types of PFAS species are summarized in two major categories, biodegradation with and without the cleavage of C-F bond. Existing uncertainties and future research directions for PFAS biodegradation are provided.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.