柔性多孔配位聚合物的化学性质及其应用

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nibedita Behera , Jingui Duan , Wanqin Jin , Susumu Kitagawa
{"title":"柔性多孔配位聚合物的化学性质及其应用","authors":"Nibedita Behera ,&nbsp;Jingui Duan ,&nbsp;Wanqin Jin ,&nbsp;Susumu Kitagawa","doi":"10.1016/j.enchem.2021.100067","DOIUrl":null,"url":null,"abstract":"<div><p>Since the late 1990s, much progress has been made in the field of the chemistry of flexible porous coordination polymers (PCPs). Various PCP architectures have been recognized and several promising applications have been identified, e.g., in the areas of selective gas capture and separation, sensors, and drug carriers. The crystalline and flexible frameworks of PCPs can respond to various external stimuli and then adjust themselves to adapt to new environments in a tuneable fashionࣧ behavior that is seldom observed in other porous solids. Over the past decade, following on from developments made in terms of flexible PCP performance, how to accurately build these architectures with the required functions has become a new challenge. In this review, the authors focus on the three aspects of flexible PCPs: 1) classifying the flexible systems with different fashions of pore opening, 2) classifying the flexible PCPs with governing factors of internal structure and external conditions, and 3) introducing, and summarizing, flexibility- and structure-dependent performance. The goal is to present the state-of-art chemistry and application of flexible PCPs and to offer an outlook towards discovering and designing further new materials.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"3 6","pages":"Article 100067"},"PeriodicalIF":22.2000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"The chemistry and applications of flexible porous coordination polymers\",\"authors\":\"Nibedita Behera ,&nbsp;Jingui Duan ,&nbsp;Wanqin Jin ,&nbsp;Susumu Kitagawa\",\"doi\":\"10.1016/j.enchem.2021.100067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the late 1990s, much progress has been made in the field of the chemistry of flexible porous coordination polymers (PCPs). Various PCP architectures have been recognized and several promising applications have been identified, e.g., in the areas of selective gas capture and separation, sensors, and drug carriers. The crystalline and flexible frameworks of PCPs can respond to various external stimuli and then adjust themselves to adapt to new environments in a tuneable fashionࣧ behavior that is seldom observed in other porous solids. Over the past decade, following on from developments made in terms of flexible PCP performance, how to accurately build these architectures with the required functions has become a new challenge. In this review, the authors focus on the three aspects of flexible PCPs: 1) classifying the flexible systems with different fashions of pore opening, 2) classifying the flexible PCPs with governing factors of internal structure and external conditions, and 3) introducing, and summarizing, flexibility- and structure-dependent performance. The goal is to present the state-of-art chemistry and application of flexible PCPs and to offer an outlook towards discovering and designing further new materials.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"3 6\",\"pages\":\"Article 100067\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778021000178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778021000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 41

摘要

自20世纪90年代末以来,柔性多孔配位聚合物(pcp)的化学研究取得了很大进展。人们已经认识到各种PCP结构,并确定了几种有前途的应用,例如,在选择性气体捕获和分离、传感器和药物载体领域。pcp的晶体和柔性框架可以响应各种外部刺激,然后调整自己以适应新的环境,这在其他多孔固体中很少观察到fashionࣧ行为。在过去的十年中,随着灵活的PCP性能方面的发展,如何准确地构建具有所需功能的这些体系结构已成为一个新的挑战。本文从三个方面对柔性聚苯乙烯进行了综述:1)对不同开孔方式的柔性系统进行了分类;2)对柔性聚苯乙烯进行了内部结构和外部条件控制因素的分类;3)对柔性聚苯乙烯的柔性性能和结构依赖性能进行了介绍和总结。会议的目标是介绍柔性pcp的最新化学和应用,并为发现和设计进一步的新材料提供前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The chemistry and applications of flexible porous coordination polymers

Since the late 1990s, much progress has been made in the field of the chemistry of flexible porous coordination polymers (PCPs). Various PCP architectures have been recognized and several promising applications have been identified, e.g., in the areas of selective gas capture and separation, sensors, and drug carriers. The crystalline and flexible frameworks of PCPs can respond to various external stimuli and then adjust themselves to adapt to new environments in a tuneable fashionࣧ behavior that is seldom observed in other porous solids. Over the past decade, following on from developments made in terms of flexible PCP performance, how to accurately build these architectures with the required functions has become a new challenge. In this review, the authors focus on the three aspects of flexible PCPs: 1) classifying the flexible systems with different fashions of pore opening, 2) classifying the flexible PCPs with governing factors of internal structure and external conditions, and 3) introducing, and summarizing, flexibility- and structure-dependent performance. The goal is to present the state-of-art chemistry and application of flexible PCPs and to offer an outlook towards discovering and designing further new materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信