一种用线性回归确定两点情况下绑定参数的简化方法

Vincenzo Guardabasso , Fabio Benfenati
{"title":"一种用线性回归确定两点情况下绑定参数的简化方法","authors":"Vincenzo Guardabasso ,&nbsp;Fabio Benfenati","doi":"10.1016/0010-468X(83)90044-2","DOIUrl":null,"url":null,"abstract":"<div><p>A program using a simplified method to compute estimates of binding parameters in a system with two independent classes of binding sites is presented. An iterative method is used to approximate step-by-step the two lines describing the binding activities separately, starting from a curvilinear Scatchard or Hofstee plot. This method is designed for use on microcomputers with graphic facilities and on programmable hand-held calculators.</p></div>","PeriodicalId":75731,"journal":{"name":"Computer programs in biomedicine","volume":"17 3","pages":"Pages 235-242"},"PeriodicalIF":0.0000,"publicationDate":"1983-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0010-468X(83)90044-2","citationCount":"2","resultStr":"{\"title\":\"A simplified method to determine binding parameters in a two-site case using linear regression\",\"authors\":\"Vincenzo Guardabasso ,&nbsp;Fabio Benfenati\",\"doi\":\"10.1016/0010-468X(83)90044-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A program using a simplified method to compute estimates of binding parameters in a system with two independent classes of binding sites is presented. An iterative method is used to approximate step-by-step the two lines describing the binding activities separately, starting from a curvilinear Scatchard or Hofstee plot. This method is designed for use on microcomputers with graphic facilities and on programmable hand-held calculators.</p></div>\",\"PeriodicalId\":75731,\"journal\":{\"name\":\"Computer programs in biomedicine\",\"volume\":\"17 3\",\"pages\":\"Pages 235-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0010-468X(83)90044-2\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer programs in biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0010468X83900442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer programs in biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0010468X83900442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给出了一种用简化方法计算具有两类独立结合位点的系统的结合参数估计的程序。从曲线Scatchard或Hofstee图开始,使用迭代方法逐步逼近分别描述绑定活动的两条线。这种方法设计用于具有图形功能的微型计算机和可编程手持计算器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simplified method to determine binding parameters in a two-site case using linear regression

A program using a simplified method to compute estimates of binding parameters in a system with two independent classes of binding sites is presented. An iterative method is used to approximate step-by-step the two lines describing the binding activities separately, starting from a curvilinear Scatchard or Hofstee plot. This method is designed for use on microcomputers with graphic facilities and on programmable hand-held calculators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信