溶剂对液固界面催化反应的影响及相关现象

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Gengnan Li, Bin Wang, Daniel E. Resasco
{"title":"溶剂对液固界面催化反应的影响及相关现象","authors":"Gengnan Li,&nbsp;Bin Wang,&nbsp;Daniel E. Resasco","doi":"10.1016/j.surfrep.2021.100541","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions<span> that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity<span>. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects<span>, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.</span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 4","pages":"Article 100541"},"PeriodicalIF":8.2000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces\",\"authors\":\"Gengnan Li,&nbsp;Bin Wang,&nbsp;Daniel E. Resasco\",\"doi\":\"10.1016/j.surfrep.2021.100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions<span> that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity<span>. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects<span>, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.</span></span></span></p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"76 4\",\"pages\":\"Article 100541\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572921000261\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572921000261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 19

摘要

催化反应包括反应物、中间体和产物与催化剂表面的直接相互作用。我们不仅需要控制活性位点的原子结构和电子性质,还需要探索活性位点之外发生的多种分子相互作用;它们在改变表面物质的结合和反应性方面起着重要作用。在液相催化中,溶剂为设计理想的活性和选择性的催化过程提供了额外的自由度。溶剂的多方面影响对催化剂的性能有着深远的影响,它限制了催化剂的传质,调节了表面物质的化学势,竞争了活性位点,稳定了初始态和过渡态,并通过参与动力学相关的基本步骤引起了机理变化。本综述讨论了溶剂效应的不同方面,使用几个原型固液界面来说明这些基本特征。最近的实验和计算研究在分子水平上提供了新的见解。讨论了催化剂表面附近的溶剂结构及其对分子结合和固液界面反应的影响。此外,还探讨了通过调整催化剂表面的润湿性来改变这种固液相互作用的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces

Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信