利用纳米磁性材料去除水中混合物中的Pb+2和Cd+2

Q2 Materials Science
Zahra Al-Timimi , Zeina J. Tammemi
{"title":"利用纳米磁性材料去除水中混合物中的Pb+2和Cd+2","authors":"Zahra Al-Timimi ,&nbsp;Zeina J. Tammemi","doi":"10.1016/j.crgsc.2022.100290","DOIUrl":null,"url":null,"abstract":"<div><p>The magnetic structure of NiFe<sub>2</sub>O<sub>4</sub> particles has been obtained by using a sol-gel auto combustion technique with limejuice as a surface-active agent as well as a fuel agent. The above process is classified as sustainable chemistry, which is a procedure that is both environmentally friendly and less expensive than other methods. Some of the physical and chemical techniques used to diagnose nanomaterials include energy-dispersive X-ray spectroscopy, XRD, FTIR, TEM, FESEM, and Brunauer-Emmett-Teller. The phase purity and particle size of 24.27 ​nm were revealed by XRD patterns. Pb<sup>+2</sup>, as well as Cd<sup>+2</sup> absorption characteristics, have been investigated in relation to adsorbent concentration, pH, temperature, and contact time. When the pH ranges from three to nine, the best time to contact is 60 ​min for Pb<sup>+2</sup> and 90 ​min for Cd<sup>+2</sup>. When compared to the Langmuir adsorption model, the adsorption studies revealed a strong relationship with a Freundlich adsorption isotherm. The thermophysical properties have been described, showing an endothermic reaction for ΔH, a spontaneous process for ΔG, as well as a positive value for ΔS, which was characterized by an increase in process disorder.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"5 ","pages":"Article 100290"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Utilizing nanomagnetic materials to eliminate Pb+2 and Cd+2 from aqueous mixtures\",\"authors\":\"Zahra Al-Timimi ,&nbsp;Zeina J. Tammemi\",\"doi\":\"10.1016/j.crgsc.2022.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The magnetic structure of NiFe<sub>2</sub>O<sub>4</sub> particles has been obtained by using a sol-gel auto combustion technique with limejuice as a surface-active agent as well as a fuel agent. The above process is classified as sustainable chemistry, which is a procedure that is both environmentally friendly and less expensive than other methods. Some of the physical and chemical techniques used to diagnose nanomaterials include energy-dispersive X-ray spectroscopy, XRD, FTIR, TEM, FESEM, and Brunauer-Emmett-Teller. The phase purity and particle size of 24.27 ​nm were revealed by XRD patterns. Pb<sup>+2</sup>, as well as Cd<sup>+2</sup> absorption characteristics, have been investigated in relation to adsorbent concentration, pH, temperature, and contact time. When the pH ranges from three to nine, the best time to contact is 60 ​min for Pb<sup>+2</sup> and 90 ​min for Cd<sup>+2</sup>. When compared to the Langmuir adsorption model, the adsorption studies revealed a strong relationship with a Freundlich adsorption isotherm. The thermophysical properties have been described, showing an endothermic reaction for ΔH, a spontaneous process for ΔG, as well as a positive value for ΔS, which was characterized by an increase in process disorder.</p></div>\",\"PeriodicalId\":296,\"journal\":{\"name\":\"Current Research in Green and Sustainable Chemistry\",\"volume\":\"5 \",\"pages\":\"Article 100290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666086522000327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086522000327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

摘要

采用溶胶-凝胶自燃烧技术,以酸橙汁为表面活性剂和燃料剂,获得了NiFe2O4颗粒的磁性结构。上述过程被归类为可持续化学,这是一种既环保又比其他方法便宜的过程。一些用于诊断纳米材料的物理和化学技术包括能量色散x射线光谱、XRD、FTIR、TEM、FESEM和Brunauer-Emmett-Teller。XRD图显示了24.27 nm的相纯度和粒径。研究了吸附剂浓度、pH、温度和接触时间对Pb+2和Cd+2吸附特性的影响。当pH为3 ~ 9时,Pb+2的最佳接触时间为60 min, Cd+2的最佳接触时间为90 min。与Langmuir吸附模型相比,吸附研究揭示了与Freundlich吸附等温线的密切关系。描述了热物理性质,表明ΔH为吸热反应,ΔG为自发过程,ΔS为正值,其特征是过程无序度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing nanomagnetic materials to eliminate Pb+2 and Cd+2 from aqueous mixtures

The magnetic structure of NiFe2O4 particles has been obtained by using a sol-gel auto combustion technique with limejuice as a surface-active agent as well as a fuel agent. The above process is classified as sustainable chemistry, which is a procedure that is both environmentally friendly and less expensive than other methods. Some of the physical and chemical techniques used to diagnose nanomaterials include energy-dispersive X-ray spectroscopy, XRD, FTIR, TEM, FESEM, and Brunauer-Emmett-Teller. The phase purity and particle size of 24.27 ​nm were revealed by XRD patterns. Pb+2, as well as Cd+2 absorption characteristics, have been investigated in relation to adsorbent concentration, pH, temperature, and contact time. When the pH ranges from three to nine, the best time to contact is 60 ​min for Pb+2 and 90 ​min for Cd+2. When compared to the Langmuir adsorption model, the adsorption studies revealed a strong relationship with a Freundlich adsorption isotherm. The thermophysical properties have been described, showing an endothermic reaction for ΔH, a spontaneous process for ΔG, as well as a positive value for ΔS, which was characterized by an increase in process disorder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信