{"title":"自旋标记放射性磷脂酸的便捷生物合成制备。","authors":"L Stuhne-Sekalec, N Z Stanacev","doi":"10.1139/o82-130","DOIUrl":null,"url":null,"abstract":"<p><p>A convenient method for the enzymatic preparation of sn-3-[2-3H]phosphatidic acids carrying also 5-, 12-, or 16-nitroxide stearic acids, from sn-3-[2-3H]glycerophosphate and isolated guinea pig liver microsomes, is described in detail. The procedure allows a simultaneous preparation of three spin-labelled sn-3-[2-3H]phosphatidic acids of yields 3-3.5 mumol of each compound which is greater than 99% pure in respect to the radioactivity and which contains 25 mol% of spin-labelled fatty acids. These phosphatidic acids were approximately equally distributed between the primary and the secondary hydroxyl when 12- or 16-nitroxide stearic acids were used or predominantly (75%) associated with the secondary hydroxyl of sn-3-[2-3H]phosphatidic acid when 5-nitroxide stearic acid was present in the incubation mixture.</p>","PeriodicalId":9508,"journal":{"name":"Canadian journal of biochemistry","volume":"60 11","pages":"1014-7"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/o82-130","citationCount":"5","resultStr":"{\"title\":\"Convenient biosynthetic preparation of isomeric spin-labelled radioactive phosphatidic acids.\",\"authors\":\"L Stuhne-Sekalec, N Z Stanacev\",\"doi\":\"10.1139/o82-130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A convenient method for the enzymatic preparation of sn-3-[2-3H]phosphatidic acids carrying also 5-, 12-, or 16-nitroxide stearic acids, from sn-3-[2-3H]glycerophosphate and isolated guinea pig liver microsomes, is described in detail. The procedure allows a simultaneous preparation of three spin-labelled sn-3-[2-3H]phosphatidic acids of yields 3-3.5 mumol of each compound which is greater than 99% pure in respect to the radioactivity and which contains 25 mol% of spin-labelled fatty acids. These phosphatidic acids were approximately equally distributed between the primary and the secondary hydroxyl when 12- or 16-nitroxide stearic acids were used or predominantly (75%) associated with the secondary hydroxyl of sn-3-[2-3H]phosphatidic acid when 5-nitroxide stearic acid was present in the incubation mixture.</p>\",\"PeriodicalId\":9508,\"journal\":{\"name\":\"Canadian journal of biochemistry\",\"volume\":\"60 11\",\"pages\":\"1014-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/o82-130\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/o82-130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/o82-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convenient biosynthetic preparation of isomeric spin-labelled radioactive phosphatidic acids.
A convenient method for the enzymatic preparation of sn-3-[2-3H]phosphatidic acids carrying also 5-, 12-, or 16-nitroxide stearic acids, from sn-3-[2-3H]glycerophosphate and isolated guinea pig liver microsomes, is described in detail. The procedure allows a simultaneous preparation of three spin-labelled sn-3-[2-3H]phosphatidic acids of yields 3-3.5 mumol of each compound which is greater than 99% pure in respect to the radioactivity and which contains 25 mol% of spin-labelled fatty acids. These phosphatidic acids were approximately equally distributed between the primary and the secondary hydroxyl when 12- or 16-nitroxide stearic acids were used or predominantly (75%) associated with the secondary hydroxyl of sn-3-[2-3H]phosphatidic acid when 5-nitroxide stearic acid was present in the incubation mixture.