{"title":"水疱性口炎病毒新泽西血清型tsD1突变体N蛋白电泳迁移性突变的研究","authors":"E Brown, L Prevec","doi":"10.1139/o82-137","DOIUrl":null,"url":null,"abstract":"<p><p>Some isolates of the temperature sensitive mutant tsD1 of complementation group D of vesicular stomatitis virus of New Jersey serotype have a nucleocapsid (N) protein which shows an increased electrophoretic mobility on sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE) when compared with wild type. Utilizing techniques involving specific chemical cleavage at tryptophan or methionine residues, as well as enzymatic cleavage with carboxypeptidases A and B, we have determined that residues near the carboxyterminus are responsible for the electrophoretic difference of the mutant protein. We have further shown that there are no differences in the tryptic peptides of the mutant compared with the wild type or a non-ts revertant in this region of the protein. We have identified a tryptic peptide located outside the relevant carboxyterminal region which is distinct in mutant and revertant. We conclude that the mutation producing the aberrant electrophoretic mobility of N protein of the tsD1 mutant is a missense point mutation located at least 40 amino acid residues from the carboxyterminus and which interacts with a more proximal carboxyregion so as to influence electrophoretic mobility on SDS-PAGE.</p>","PeriodicalId":9508,"journal":{"name":"Canadian journal of biochemistry","volume":"60 11","pages":"1065-76"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/o82-137","citationCount":"3","resultStr":"{\"title\":\"Characterization of the electrophoretic mobility mutation in the N protein of the tsD1 mutant of vesicular stomatitis virus New Jersey serotype.\",\"authors\":\"E Brown, L Prevec\",\"doi\":\"10.1139/o82-137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Some isolates of the temperature sensitive mutant tsD1 of complementation group D of vesicular stomatitis virus of New Jersey serotype have a nucleocapsid (N) protein which shows an increased electrophoretic mobility on sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE) when compared with wild type. Utilizing techniques involving specific chemical cleavage at tryptophan or methionine residues, as well as enzymatic cleavage with carboxypeptidases A and B, we have determined that residues near the carboxyterminus are responsible for the electrophoretic difference of the mutant protein. We have further shown that there are no differences in the tryptic peptides of the mutant compared with the wild type or a non-ts revertant in this region of the protein. We have identified a tryptic peptide located outside the relevant carboxyterminal region which is distinct in mutant and revertant. We conclude that the mutation producing the aberrant electrophoretic mobility of N protein of the tsD1 mutant is a missense point mutation located at least 40 amino acid residues from the carboxyterminus and which interacts with a more proximal carboxyregion so as to influence electrophoretic mobility on SDS-PAGE.</p>\",\"PeriodicalId\":9508,\"journal\":{\"name\":\"Canadian journal of biochemistry\",\"volume\":\"60 11\",\"pages\":\"1065-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/o82-137\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/o82-137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/o82-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of the electrophoretic mobility mutation in the N protein of the tsD1 mutant of vesicular stomatitis virus New Jersey serotype.
Some isolates of the temperature sensitive mutant tsD1 of complementation group D of vesicular stomatitis virus of New Jersey serotype have a nucleocapsid (N) protein which shows an increased electrophoretic mobility on sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE) when compared with wild type. Utilizing techniques involving specific chemical cleavage at tryptophan or methionine residues, as well as enzymatic cleavage with carboxypeptidases A and B, we have determined that residues near the carboxyterminus are responsible for the electrophoretic difference of the mutant protein. We have further shown that there are no differences in the tryptic peptides of the mutant compared with the wild type or a non-ts revertant in this region of the protein. We have identified a tryptic peptide located outside the relevant carboxyterminal region which is distinct in mutant and revertant. We conclude that the mutation producing the aberrant electrophoretic mobility of N protein of the tsD1 mutant is a missense point mutation located at least 40 amino acid residues from the carboxyterminus and which interacts with a more proximal carboxyregion so as to influence electrophoretic mobility on SDS-PAGE.