通过缺陷调节的BiPO4纳米棒的光催化性能

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yanyan Zhu , Qiang Ling , Yanfang Liu , Hua Wang , Yongfa Zhu
{"title":"通过缺陷调节的BiPO4纳米棒的光催化性能","authors":"Yanyan Zhu ,&nbsp;Qiang Ling ,&nbsp;Yanfang Liu ,&nbsp;Hua Wang ,&nbsp;Yongfa Zhu","doi":"10.1016/j.apcatb.2016.01.012","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of defect on the photocatalytic and photoelectric performance of BiPO<sub>4</sub> has been revealed. The bulk defects of BiPO<sub>4</sub> such as bismuth vacancies (V<sub>Bi</sub>), oxygen vacancies (V<sub>O</sub>) and so on were formed during the ball-milling process. These bulk defects of BiPO<sub>4</sub> inhibited the separation of photo-generated charges greatly and thus reduced photocatalytic activity. Most of the bulk defects were repaired and the photocatalytic activity of BiPO<sub>4</sub><span> was also recovered mostly via calcination and reflux. Reflux could repair the bulk defects of BiPO</span><sub>4</sub> much better than calcination. The mechanism of the photocatalytic degradation of pollutants over BiPO<sub>4</sub><span> was not changed by defects, and the main oxidation active species of BiPO</span><sub>4</sub> is photo-generated hole.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"187 ","pages":"Pages 204-211"},"PeriodicalIF":20.2000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.apcatb.2016.01.012","citationCount":"130","resultStr":"{\"title\":\"Photocatalytic performance of BiPO4 nanorods adjusted via defects\",\"authors\":\"Yanyan Zhu ,&nbsp;Qiang Ling ,&nbsp;Yanfang Liu ,&nbsp;Hua Wang ,&nbsp;Yongfa Zhu\",\"doi\":\"10.1016/j.apcatb.2016.01.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of defect on the photocatalytic and photoelectric performance of BiPO<sub>4</sub> has been revealed. The bulk defects of BiPO<sub>4</sub> such as bismuth vacancies (V<sub>Bi</sub>), oxygen vacancies (V<sub>O</sub>) and so on were formed during the ball-milling process. These bulk defects of BiPO<sub>4</sub> inhibited the separation of photo-generated charges greatly and thus reduced photocatalytic activity. Most of the bulk defects were repaired and the photocatalytic activity of BiPO<sub>4</sub><span> was also recovered mostly via calcination and reflux. Reflux could repair the bulk defects of BiPO</span><sub>4</sub> much better than calcination. The mechanism of the photocatalytic degradation of pollutants over BiPO<sub>4</sub><span> was not changed by defects, and the main oxidation active species of BiPO</span><sub>4</sub> is photo-generated hole.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":\"187 \",\"pages\":\"Pages 204-211\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.apcatb.2016.01.012\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092633731630011X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092633731630011X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 130

摘要

揭示了缺陷对BiPO4光催化性能和光电性能的影响。在球磨过程中形成了铋空位(VBi)、氧空位(VO)等本体缺陷。BiPO4的这些体积缺陷极大地抑制了光生电荷的分离,从而降低了光催化活性。通过煅烧和回流,修复了大部分体积缺陷,恢复了BiPO4的光催化活性。回流对BiPO4本体缺陷的修复效果明显优于煅烧。缺陷不改变BiPO4光催化降解污染物的机理,BiPO4的主要氧化活性物质为光生空穴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocatalytic performance of BiPO4 nanorods adjusted via defects

Photocatalytic performance of BiPO4 nanorods adjusted via defects

The effect of defect on the photocatalytic and photoelectric performance of BiPO4 has been revealed. The bulk defects of BiPO4 such as bismuth vacancies (VBi), oxygen vacancies (VO) and so on were formed during the ball-milling process. These bulk defects of BiPO4 inhibited the separation of photo-generated charges greatly and thus reduced photocatalytic activity. Most of the bulk defects were repaired and the photocatalytic activity of BiPO4 was also recovered mostly via calcination and reflux. Reflux could repair the bulk defects of BiPO4 much better than calcination. The mechanism of the photocatalytic degradation of pollutants over BiPO4 was not changed by defects, and the main oxidation active species of BiPO4 is photo-generated hole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信