Qian Liu, Shouhai Zhang, Lin Zhuo, Zhaoqi Wang, Chenghao Wang, Fenchen Sun, Kang Niu, Feiqi Xu, Xuefu Che, Jie Zhang, Xigao Jian
{"title":"以悬垂苯磺酸基团的n -杂环聚芳醚酮为原料制备的先进质子交换膜,具有增强的自由基耐受性和燃料电池性能","authors":"Qian Liu, Shouhai Zhang, Lin Zhuo, Zhaoqi Wang, Chenghao Wang, Fenchen Sun, Kang Niu, Feiqi Xu, Xuefu Che, Jie Zhang, Xigao Jian","doi":"10.1016/j.memsci.2023.121767","DOIUrl":null,"url":null,"abstract":"<div><p><span>The application of sulfonated poly(aryl ether)s proton exchange membranes in fuel cells is hampered by the inadequate oxidation<span> stability and the trade-off effect between proton-conducting performance and physicochemical stability. So the sulfonated N-heterocyclic poly(aryl ether ketone)s (SPBPEK-Ps) membranes possessing fine proton-conducting behavior and radical tolerance are manufactured by the elaborate design of molecular backbones. The hydrophilic units containing proton-conducting groups in pendant moieties in SPBPEK-Ps contribute to constructing developed proton-conducting channels, in which the multiple interactions between sulfonic groups and N-heterocycles further promote proton conduction with the conductivity of up to 125 mS cm</span></span><sup>−1</sup>. The fuel cells loading SPBPEK-Ps membranes perform a power density of up to 1210 mW cm<sup>−2</sup> with hypo-sensitivity to temperature and oxidized gas. A couple of steric hindrances from pendant proton-conducting groups and the diminished affinity of radicals for molecular chains resulting from the introduction of N-heterocyclic structure enhance the oxidation stability of SPBPEK-Ps membranes, and the break time of the membranes at 80 °C ranges in 2.5–7.8 h. The combination of the pendant proton-conducting groups and N-heterocycles with the electron-withdrawing effect would contribute to improving proton-conducting performance and oxidation stability and attenuating the trade-off effect between them.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"681 ","pages":"Article 121767"},"PeriodicalIF":8.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced proton exchange membrane prepared from N-heterocyclic poly(aryl ether ketone)s with pendant benzenesulfonic moieties and performing enhanced radical tolerance and fuel cell properties\",\"authors\":\"Qian Liu, Shouhai Zhang, Lin Zhuo, Zhaoqi Wang, Chenghao Wang, Fenchen Sun, Kang Niu, Feiqi Xu, Xuefu Che, Jie Zhang, Xigao Jian\",\"doi\":\"10.1016/j.memsci.2023.121767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The application of sulfonated poly(aryl ether)s proton exchange membranes in fuel cells is hampered by the inadequate oxidation<span> stability and the trade-off effect between proton-conducting performance and physicochemical stability. So the sulfonated N-heterocyclic poly(aryl ether ketone)s (SPBPEK-Ps) membranes possessing fine proton-conducting behavior and radical tolerance are manufactured by the elaborate design of molecular backbones. The hydrophilic units containing proton-conducting groups in pendant moieties in SPBPEK-Ps contribute to constructing developed proton-conducting channels, in which the multiple interactions between sulfonic groups and N-heterocycles further promote proton conduction with the conductivity of up to 125 mS cm</span></span><sup>−1</sup>. The fuel cells loading SPBPEK-Ps membranes perform a power density of up to 1210 mW cm<sup>−2</sup> with hypo-sensitivity to temperature and oxidized gas. A couple of steric hindrances from pendant proton-conducting groups and the diminished affinity of radicals for molecular chains resulting from the introduction of N-heterocyclic structure enhance the oxidation stability of SPBPEK-Ps membranes, and the break time of the membranes at 80 °C ranges in 2.5–7.8 h. The combination of the pendant proton-conducting groups and N-heterocycles with the electron-withdrawing effect would contribute to improving proton-conducting performance and oxidation stability and attenuating the trade-off effect between them.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"681 \",\"pages\":\"Article 121767\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738823004234\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738823004234","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
磺化聚芳醚质子交换膜在燃料电池中的应用受到氧化稳定性不足以及质子导电性能与物理化学稳定性之间的权衡效应的制约。通过分子骨架的精心设计,制备了具有良好质子传导性能和自由基耐受性的磺化n-杂环聚芳醚酮(SPBPEK-Ps)膜。SPBPEK-Ps中含有质子传导基团的亲水单元有助于构建成熟的质子传导通道,其中巯基和n-杂环之间的多重相互作用进一步促进质子传导,电导率高达125 mS cm−1。负载SPBPEK-Ps膜的燃料电池功率密度高达1210 mW cm−2,对温度和氧化气体不敏感。由于引入n-杂环结构,SPBPEK-Ps膜上的质子传导基团和自由基对分子链的亲和力降低,从而提高了SPBPEK-Ps膜的氧化稳定性。在80℃下,膜的断裂时间在2.5 ~ 7.8 h之间。悬垂型质子导电基团与具有吸电子效应的n杂环的结合有助于提高质子导电性能和氧化稳定性,并减弱两者之间的权衡效应。
Advanced proton exchange membrane prepared from N-heterocyclic poly(aryl ether ketone)s with pendant benzenesulfonic moieties and performing enhanced radical tolerance and fuel cell properties
The application of sulfonated poly(aryl ether)s proton exchange membranes in fuel cells is hampered by the inadequate oxidation stability and the trade-off effect between proton-conducting performance and physicochemical stability. So the sulfonated N-heterocyclic poly(aryl ether ketone)s (SPBPEK-Ps) membranes possessing fine proton-conducting behavior and radical tolerance are manufactured by the elaborate design of molecular backbones. The hydrophilic units containing proton-conducting groups in pendant moieties in SPBPEK-Ps contribute to constructing developed proton-conducting channels, in which the multiple interactions between sulfonic groups and N-heterocycles further promote proton conduction with the conductivity of up to 125 mS cm−1. The fuel cells loading SPBPEK-Ps membranes perform a power density of up to 1210 mW cm−2 with hypo-sensitivity to temperature and oxidized gas. A couple of steric hindrances from pendant proton-conducting groups and the diminished affinity of radicals for molecular chains resulting from the introduction of N-heterocyclic structure enhance the oxidation stability of SPBPEK-Ps membranes, and the break time of the membranes at 80 °C ranges in 2.5–7.8 h. The combination of the pendant proton-conducting groups and N-heterocycles with the electron-withdrawing effect would contribute to improving proton-conducting performance and oxidation stability and attenuating the trade-off effect between them.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.