{"title":"用于调节肿瘤代谢的先进纳米药物","authors":"Jiaying Yang, Yu Zhao, Yanyan Zhou, Xiaolu Wei, Hongjie Wang, Nan Si, Jian Yang, Qinghe Zhao, Baolin Bian, Haiyu Zhao","doi":"10.1016/j.biomaterials.2022.121565","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer cells can reprogram metabolic pathways to facilitate proliferation, metastasis, biosynthesis<span>, and chemoresistance. Metabolic reprogramming is currently considered as a hallmark of tumors and is recognized as a promising therapeutic strategy. The recent progress in nanomedicine<span><span><span> has greatly improved the therapeutic effect of conventional therapeutic modalities such as surgical treatment, radiotherapy, chemical drug therapy. However, nanomedicine engineering still fails to achieve satisfactory therapeutic effects due to the metabolic reprogramming of tumor cells. The targeted delivery and development of precise therapeutic strategies are the latest focus in tumor metabolism to design nanomedicines according to the characteristics of cancer metabolic reprogramming. Therefore, this review focuses mainly on metabolic pathways of tumors. Pathways such as glycolysis, </span>aerobic respiration, lipid metabolism, </span>nucleotide metabolism<span>, and glutathione metabolism<span> are reviewed in detail. The latest advances are summarized in the design and combined treatment of smart nanomedicines that can regulate cancer metabolism to provide an emerging cancer therapeutic model. The challenges and future developments of this cancer therapeutic model are discussed in detail to understand as much as possible the prospects of this field. Designing nanomedicine therapy strategies by targeting tumor metabolic characteristics will provide a novel approach for the application of personalized biomedicine of tumors.</span></span></span></span></p></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"286 ","pages":"Article 121565"},"PeriodicalIF":12.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Advanced nanomedicines for the regulation of cancer metabolism\",\"authors\":\"Jiaying Yang, Yu Zhao, Yanyan Zhou, Xiaolu Wei, Hongjie Wang, Nan Si, Jian Yang, Qinghe Zhao, Baolin Bian, Haiyu Zhao\",\"doi\":\"10.1016/j.biomaterials.2022.121565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer cells can reprogram metabolic pathways to facilitate proliferation, metastasis, biosynthesis<span>, and chemoresistance. Metabolic reprogramming is currently considered as a hallmark of tumors and is recognized as a promising therapeutic strategy. The recent progress in nanomedicine<span><span><span> has greatly improved the therapeutic effect of conventional therapeutic modalities such as surgical treatment, radiotherapy, chemical drug therapy. However, nanomedicine engineering still fails to achieve satisfactory therapeutic effects due to the metabolic reprogramming of tumor cells. The targeted delivery and development of precise therapeutic strategies are the latest focus in tumor metabolism to design nanomedicines according to the characteristics of cancer metabolic reprogramming. Therefore, this review focuses mainly on metabolic pathways of tumors. Pathways such as glycolysis, </span>aerobic respiration, lipid metabolism, </span>nucleotide metabolism<span>, and glutathione metabolism<span> are reviewed in detail. The latest advances are summarized in the design and combined treatment of smart nanomedicines that can regulate cancer metabolism to provide an emerging cancer therapeutic model. The challenges and future developments of this cancer therapeutic model are discussed in detail to understand as much as possible the prospects of this field. Designing nanomedicine therapy strategies by targeting tumor metabolic characteristics will provide a novel approach for the application of personalized biomedicine of tumors.</span></span></span></span></p></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"286 \",\"pages\":\"Article 121565\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961222002058\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961222002058","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Advanced nanomedicines for the regulation of cancer metabolism
Cancer cells can reprogram metabolic pathways to facilitate proliferation, metastasis, biosynthesis, and chemoresistance. Metabolic reprogramming is currently considered as a hallmark of tumors and is recognized as a promising therapeutic strategy. The recent progress in nanomedicine has greatly improved the therapeutic effect of conventional therapeutic modalities such as surgical treatment, radiotherapy, chemical drug therapy. However, nanomedicine engineering still fails to achieve satisfactory therapeutic effects due to the metabolic reprogramming of tumor cells. The targeted delivery and development of precise therapeutic strategies are the latest focus in tumor metabolism to design nanomedicines according to the characteristics of cancer metabolic reprogramming. Therefore, this review focuses mainly on metabolic pathways of tumors. Pathways such as glycolysis, aerobic respiration, lipid metabolism, nucleotide metabolism, and glutathione metabolism are reviewed in detail. The latest advances are summarized in the design and combined treatment of smart nanomedicines that can regulate cancer metabolism to provide an emerging cancer therapeutic model. The challenges and future developments of this cancer therapeutic model are discussed in detail to understand as much as possible the prospects of this field. Designing nanomedicine therapy strategies by targeting tumor metabolic characteristics will provide a novel approach for the application of personalized biomedicine of tumors.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.