Bohao Zhao , Jiali Li , Xiyu Zhang , Yingying Dai , Naisu Yang , Zhiyuan Bao , Yang Chen , Xinsheng Wu
{"title":"毛囊真皮乳头细胞外泌体miRNA-181a-5p通过Wnt/β-catenin信号通路促进毛囊生长发育","authors":"Bohao Zhao , Jiali Li , Xiyu Zhang , Yingying Dai , Naisu Yang , Zhiyuan Bao , Yang Chen , Xinsheng Wu","doi":"10.1016/j.ijbiomac.2022.02.177","DOIUrl":null,"url":null,"abstract":"<div><p>Exosomal miRNAs are verified critical biomarkers, which participate in several biological processes. The growth and development of the hair follicle (HF) are typically controlled by the exosomal miRNAs <em>via</em> cell-to-cell communication. This study identified a high expression of miR-181a-5p in the low-passage DPC-Exos (exosomes derived from dermal papilla cell), revealing the transportation patterns of the DPC-Exos-derived miR-181a-5p entering the HFSC (hair follicle stem cell). The exosomal miR-181a-5p activates the Wnt/β-catenin signaling pathway by targeting the Wnt inhibitor WIF1 and thereby regulates the proteins and genes related to HF growth and development. Moreover, the exosomal miR-181a-5p was found to suppress the HFSC apoptosis but promoted the HFSC proliferation. The <em>in vitro</em> culture of the HF organ revealed that the exosomal miR-181a-5p possesses a positive role in hair growth. Collectively, the exosomal miR-181a-5p affects the HF growth and development through the Wnt/β-catenin signaling pathway. The exosomal miR-181a-5p might, therefore, act as the novel biomarker and therapeutic target for treating hair-related diseases and wool production in mammals.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"207 ","pages":"Pages 110-120"},"PeriodicalIF":8.5000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Exosomal miRNA-181a-5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β-catenin signaling pathway\",\"authors\":\"Bohao Zhao , Jiali Li , Xiyu Zhang , Yingying Dai , Naisu Yang , Zhiyuan Bao , Yang Chen , Xinsheng Wu\",\"doi\":\"10.1016/j.ijbiomac.2022.02.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exosomal miRNAs are verified critical biomarkers, which participate in several biological processes. The growth and development of the hair follicle (HF) are typically controlled by the exosomal miRNAs <em>via</em> cell-to-cell communication. This study identified a high expression of miR-181a-5p in the low-passage DPC-Exos (exosomes derived from dermal papilla cell), revealing the transportation patterns of the DPC-Exos-derived miR-181a-5p entering the HFSC (hair follicle stem cell). The exosomal miR-181a-5p activates the Wnt/β-catenin signaling pathway by targeting the Wnt inhibitor WIF1 and thereby regulates the proteins and genes related to HF growth and development. Moreover, the exosomal miR-181a-5p was found to suppress the HFSC apoptosis but promoted the HFSC proliferation. The <em>in vitro</em> culture of the HF organ revealed that the exosomal miR-181a-5p possesses a positive role in hair growth. Collectively, the exosomal miR-181a-5p affects the HF growth and development through the Wnt/β-catenin signaling pathway. The exosomal miR-181a-5p might, therefore, act as the novel biomarker and therapeutic target for treating hair-related diseases and wool production in mammals.</p></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"207 \",\"pages\":\"Pages 110-120\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813022004330\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813022004330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exosomal miRNA-181a-5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β-catenin signaling pathway
Exosomal miRNAs are verified critical biomarkers, which participate in several biological processes. The growth and development of the hair follicle (HF) are typically controlled by the exosomal miRNAs via cell-to-cell communication. This study identified a high expression of miR-181a-5p in the low-passage DPC-Exos (exosomes derived from dermal papilla cell), revealing the transportation patterns of the DPC-Exos-derived miR-181a-5p entering the HFSC (hair follicle stem cell). The exosomal miR-181a-5p activates the Wnt/β-catenin signaling pathway by targeting the Wnt inhibitor WIF1 and thereby regulates the proteins and genes related to HF growth and development. Moreover, the exosomal miR-181a-5p was found to suppress the HFSC apoptosis but promoted the HFSC proliferation. The in vitro culture of the HF organ revealed that the exosomal miR-181a-5p possesses a positive role in hair growth. Collectively, the exosomal miR-181a-5p affects the HF growth and development through the Wnt/β-catenin signaling pathway. The exosomal miR-181a-5p might, therefore, act as the novel biomarker and therapeutic target for treating hair-related diseases and wool production in mammals.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.