Linchuan Guo , Zhaori Mu , Pengfei Da , Zheng Weng , Pinxian Xi , Chun-Hua Yan
{"title":"稀土空心结构:合成及其电催化应用","authors":"Linchuan Guo , Zhaori Mu , Pengfei Da , Zheng Weng , Pinxian Xi , Chun-Hua Yan","doi":"10.1016/j.enchem.2022.100088","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Electrochemical conversion is an eco-friendly and controllable way to achieve sustainable use of energy. An enhanced energy conversion efficiency<span> requires efficient electrocatalysts to reduce the electrochemical energy barrier. The hollow structures, which have the advantage of optimizing mass/charge transfer, provide a platform for full contact between the electrocatalysts and the reactants, which has great potential for advanced electrocatalysts. In addition, rare earth-based materials integrate unique electronic configuration and chemical behavior into electrocatalysts, leading to improved performance and selectivity for various </span></span>electrocatalysis. Combining hollow structures with rare earths is fascinating and challenging in terms of synthesis and electrocatalysis. This review expounds general </span>synthesis methods of hollow structures with rare earths and then summarizes strategies to prepare highly efficient hollow electrocatalysts with rare earths.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"4 5","pages":"Article 100088"},"PeriodicalIF":22.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hollow structures with rare earths: Synthesis and electrocatalytic applications\",\"authors\":\"Linchuan Guo , Zhaori Mu , Pengfei Da , Zheng Weng , Pinxian Xi , Chun-Hua Yan\",\"doi\":\"10.1016/j.enchem.2022.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Electrochemical conversion is an eco-friendly and controllable way to achieve sustainable use of energy. An enhanced energy conversion efficiency<span> requires efficient electrocatalysts to reduce the electrochemical energy barrier. The hollow structures, which have the advantage of optimizing mass/charge transfer, provide a platform for full contact between the electrocatalysts and the reactants, which has great potential for advanced electrocatalysts. In addition, rare earth-based materials integrate unique electronic configuration and chemical behavior into electrocatalysts, leading to improved performance and selectivity for various </span></span>electrocatalysis. Combining hollow structures with rare earths is fascinating and challenging in terms of synthesis and electrocatalysis. This review expounds general </span>synthesis methods of hollow structures with rare earths and then summarizes strategies to prepare highly efficient hollow electrocatalysts with rare earths.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"4 5\",\"pages\":\"Article 100088\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778022000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778022000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hollow structures with rare earths: Synthesis and electrocatalytic applications
Electrochemical conversion is an eco-friendly and controllable way to achieve sustainable use of energy. An enhanced energy conversion efficiency requires efficient electrocatalysts to reduce the electrochemical energy barrier. The hollow structures, which have the advantage of optimizing mass/charge transfer, provide a platform for full contact between the electrocatalysts and the reactants, which has great potential for advanced electrocatalysts. In addition, rare earth-based materials integrate unique electronic configuration and chemical behavior into electrocatalysts, leading to improved performance and selectivity for various electrocatalysis. Combining hollow structures with rare earths is fascinating and challenging in terms of synthesis and electrocatalysis. This review expounds general synthesis methods of hollow structures with rare earths and then summarizes strategies to prepare highly efficient hollow electrocatalysts with rare earths.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage