{"title":"高性能锂硫电池的可控催化行为:从动力学到策略","authors":"Guiqiang Cao , Ruixian Duan , Xifei Li","doi":"10.1016/j.enchem.2022.100096","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-sulfur batteries (LSBs) with high energy density have been drawn the tremendous interests in academia as well as industry. Nevertheless, sluggish redox kinetics of sulfur species has been challenging for high performance LSBs. The design of catalytic materials, being a promising strategy for kinetics modulation by controlling polysulfides conversion, has been mainly focused. To improve battery performance of LSBs, in this review, the effect of functional catalysts with different morphologies, crystal configurations, energy band behaviors, coordination environments on kinetics modulation was summarized. Furthermore, some optimized bidirectional catalysts were mainly addressed to deeply understand appropriate adsorption capacity, prominent mass transfer capability, outstanding catalytic activity/selectivity. In addition, a great quantity of cutting-edge strategies, such as structure engineering, defect, interface engineering and atomic bonding for metal compounds as well as metal-based single atom catalysts, were proposed to uncover the synthesis behaviors of optimum bidirectional catalysts. Eventually, various advanced characterization methods were provided to evaluate catalysis. It is believed that this review will provide a novel insight for the design of bidirectional catalysts with high activity, high catalytic selectivity, long lifespan toward high-performance LSBs.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 1","pages":"Article 100096"},"PeriodicalIF":22.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Controllable catalysis behavior for high performance lithium sulfur batteries: From kinetics to strategies\",\"authors\":\"Guiqiang Cao , Ruixian Duan , Xifei Li\",\"doi\":\"10.1016/j.enchem.2022.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-sulfur batteries (LSBs) with high energy density have been drawn the tremendous interests in academia as well as industry. Nevertheless, sluggish redox kinetics of sulfur species has been challenging for high performance LSBs. The design of catalytic materials, being a promising strategy for kinetics modulation by controlling polysulfides conversion, has been mainly focused. To improve battery performance of LSBs, in this review, the effect of functional catalysts with different morphologies, crystal configurations, energy band behaviors, coordination environments on kinetics modulation was summarized. Furthermore, some optimized bidirectional catalysts were mainly addressed to deeply understand appropriate adsorption capacity, prominent mass transfer capability, outstanding catalytic activity/selectivity. In addition, a great quantity of cutting-edge strategies, such as structure engineering, defect, interface engineering and atomic bonding for metal compounds as well as metal-based single atom catalysts, were proposed to uncover the synthesis behaviors of optimum bidirectional catalysts. Eventually, various advanced characterization methods were provided to evaluate catalysis. It is believed that this review will provide a novel insight for the design of bidirectional catalysts with high activity, high catalytic selectivity, long lifespan toward high-performance LSBs.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"5 1\",\"pages\":\"Article 100096\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778022000288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778022000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Controllable catalysis behavior for high performance lithium sulfur batteries: From kinetics to strategies
Lithium-sulfur batteries (LSBs) with high energy density have been drawn the tremendous interests in academia as well as industry. Nevertheless, sluggish redox kinetics of sulfur species has been challenging for high performance LSBs. The design of catalytic materials, being a promising strategy for kinetics modulation by controlling polysulfides conversion, has been mainly focused. To improve battery performance of LSBs, in this review, the effect of functional catalysts with different morphologies, crystal configurations, energy band behaviors, coordination environments on kinetics modulation was summarized. Furthermore, some optimized bidirectional catalysts were mainly addressed to deeply understand appropriate adsorption capacity, prominent mass transfer capability, outstanding catalytic activity/selectivity. In addition, a great quantity of cutting-edge strategies, such as structure engineering, defect, interface engineering and atomic bonding for metal compounds as well as metal-based single atom catalysts, were proposed to uncover the synthesis behaviors of optimum bidirectional catalysts. Eventually, various advanced characterization methods were provided to evaluate catalysis. It is believed that this review will provide a novel insight for the design of bidirectional catalysts with high activity, high catalytic selectivity, long lifespan toward high-performance LSBs.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage