开发一种用于校准分布式流域水文模型的知识共享并行计算方法

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marjan Asgari , Wanhong Yang , John Lindsay , Hui Shao , Yongbo Liu , Rodrigo De Queiroga Miranda , Maryam Mehri Dehnavi
{"title":"开发一种用于校准分布式流域水文模型的知识共享并行计算方法","authors":"Marjan Asgari ,&nbsp;Wanhong Yang ,&nbsp;John Lindsay ,&nbsp;Hui Shao ,&nbsp;Yongbo Liu ,&nbsp;Rodrigo De Queiroga Miranda ,&nbsp;Maryam Mehri Dehnavi","doi":"10.1016/j.envsoft.2023.105708","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>A research gap in calibrating distributed watershed hydrologic models lies in the development of calibration frameworks adaptable to increasing complexity of hydrologic models. Parallel computing is a promising approach to address this gap. However, parallel calibration approaches should be fault-tolerant, portable, and easy to implement with minimum </span>communication overhead for fast </span>knowledge sharing<span> between parallel nodes. Accordingly, we developed a knowledge-sharing parallel calibration approach using Chapel programming language, with which we implemented the Parallel Dynamically Dimensioned Search (DDS) algorithm by adopting multiple perturbation factors and parallel dynamic searching strategies to keep a balance between exploration and exploitation of the search space. Our results showed that this approach achieved super-linear speedup and parallel efficiency above 75%. In addition, our approach has a low communication overhead, along with the positive impact of knowledge-sharing in the </span></span>convergence behavior of the parallel DDS algorithm.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"164 ","pages":"Article 105708"},"PeriodicalIF":4.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a knowledge-sharing parallel computing approach for calibrating distributed watershed hydrologic models\",\"authors\":\"Marjan Asgari ,&nbsp;Wanhong Yang ,&nbsp;John Lindsay ,&nbsp;Hui Shao ,&nbsp;Yongbo Liu ,&nbsp;Rodrigo De Queiroga Miranda ,&nbsp;Maryam Mehri Dehnavi\",\"doi\":\"10.1016/j.envsoft.2023.105708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>A research gap in calibrating distributed watershed hydrologic models lies in the development of calibration frameworks adaptable to increasing complexity of hydrologic models. Parallel computing is a promising approach to address this gap. However, parallel calibration approaches should be fault-tolerant, portable, and easy to implement with minimum </span>communication overhead for fast </span>knowledge sharing<span> between parallel nodes. Accordingly, we developed a knowledge-sharing parallel calibration approach using Chapel programming language, with which we implemented the Parallel Dynamically Dimensioned Search (DDS) algorithm by adopting multiple perturbation factors and parallel dynamic searching strategies to keep a balance between exploration and exploitation of the search space. Our results showed that this approach achieved super-linear speedup and parallel efficiency above 75%. In addition, our approach has a low communication overhead, along with the positive impact of knowledge-sharing in the </span></span>convergence behavior of the parallel DDS algorithm.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"164 \",\"pages\":\"Article 105708\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815223000944\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815223000944","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

分布式流域水文模型定标的一个研究空白在于开发适应日益复杂的水文模型的定标框架。并行计算是解决这一差距的一种很有前途的方法。然而,并行校准方法应具有容错、可移植和易于实现的特点,并以最小的通信开销实现并行节点之间的快速知识共享。在此基础上,利用Chapel编程语言开发了一种知识共享并行标定方法,采用多摄动因子和并行动态搜索策略实现了并行动态维数搜索(DDS)算法,以保持对搜索空间的探索和利用之间的平衡。结果表明,该方法实现了超线性加速和75%以上的并行效率。此外,我们的方法具有较低的通信开销,以及知识共享对并行DDS算法收敛行为的积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a knowledge-sharing parallel computing approach for calibrating distributed watershed hydrologic models

A research gap in calibrating distributed watershed hydrologic models lies in the development of calibration frameworks adaptable to increasing complexity of hydrologic models. Parallel computing is a promising approach to address this gap. However, parallel calibration approaches should be fault-tolerant, portable, and easy to implement with minimum communication overhead for fast knowledge sharing between parallel nodes. Accordingly, we developed a knowledge-sharing parallel calibration approach using Chapel programming language, with which we implemented the Parallel Dynamically Dimensioned Search (DDS) algorithm by adopting multiple perturbation factors and parallel dynamic searching strategies to keep a balance between exploration and exploitation of the search space. Our results showed that this approach achieved super-linear speedup and parallel efficiency above 75%. In addition, our approach has a low communication overhead, along with the positive impact of knowledge-sharing in the convergence behavior of the parallel DDS algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信