{"title":"采用混合设计法优化基于肌酸酐脱亚胺酶/Nafion®纳米聚苯胺复合膜的安培肌酸酐检测性能","authors":"Jing-Shan Do, Yu-Hsuan Chang","doi":"10.1016/j.snr.2022.100135","DOIUrl":null,"url":null,"abstract":"<div><p>Nafion®-nanostructured polyaniline (nsPANi) composite film is prepared using cyclic voltammetry (CV) and immobilized with creatinine deiminase (CD) enzyme and is used to sense creatinine in a buffer phosphate solution. The conditions for preparing Nafion®-nsPANi composite film are optimized by using a mixture design for which the sensitivity is the response. The relationship between the sensitivity of the amperometric creatinine biosensor (<em>y</em>) and the normalized aniline concentration (<em>Y</em><sub>1</sub>), HCl concentration (<em>Y</em><sub>2</sub>) and scanning rate (<em>Y</em><sub>3</sub>) is <em>y</em> = 119.44<em>Y</em><sub>1</sub> + 45.23<em>Y</em><sub>2</sub> + 100.93<em>Y</em><sub>3</sub> + 255.69<em>Y</em><sub>1</sub><em>Y</em><sub>2</sub> + 313.16<em>Y</em><sub>1</sub><em>Y</em><sub>3</sub> + 430.56<em>Y</em><sub>1</sub><em>Y</em><sub>2</sub><em>Y</em><sub>3</sub></p><p>The maximum sensitivity of an amperometric creatinine biosensor that is constructed using Nafion®-nsPANi composite film in 0.0943 M aniline, 0.9024 M HCl and using a scanning rate of 27.88 mV <em>s</em> <sup>−</sup> <sup>1</sup> is 2013.2 μA mM<sup>−1</sup> cm<sup>−2</sup>, which is 54.9% better than the sensitivity of a conventional experimental technique. The amperometric creatinine biosensor is 6.60% less sensitive after sensing 0.15 mM creatinine 240 times. The amperometric creatinine biosensor incurs insignificant interference in 0.138 mM urea, 0.085 mM ascorbic acid (AA) and 5.54 mM glucose.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"5 ","pages":"Article 100135"},"PeriodicalIF":6.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimizing the sensing performance of amperometric creatinine detection based on creatinine deiminase/Nafion®-nanostructured polyaniline composite film by mixture design method\",\"authors\":\"Jing-Shan Do, Yu-Hsuan Chang\",\"doi\":\"10.1016/j.snr.2022.100135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nafion®-nanostructured polyaniline (nsPANi) composite film is prepared using cyclic voltammetry (CV) and immobilized with creatinine deiminase (CD) enzyme and is used to sense creatinine in a buffer phosphate solution. The conditions for preparing Nafion®-nsPANi composite film are optimized by using a mixture design for which the sensitivity is the response. The relationship between the sensitivity of the amperometric creatinine biosensor (<em>y</em>) and the normalized aniline concentration (<em>Y</em><sub>1</sub>), HCl concentration (<em>Y</em><sub>2</sub>) and scanning rate (<em>Y</em><sub>3</sub>) is <em>y</em> = 119.44<em>Y</em><sub>1</sub> + 45.23<em>Y</em><sub>2</sub> + 100.93<em>Y</em><sub>3</sub> + 255.69<em>Y</em><sub>1</sub><em>Y</em><sub>2</sub> + 313.16<em>Y</em><sub>1</sub><em>Y</em><sub>3</sub> + 430.56<em>Y</em><sub>1</sub><em>Y</em><sub>2</sub><em>Y</em><sub>3</sub></p><p>The maximum sensitivity of an amperometric creatinine biosensor that is constructed using Nafion®-nsPANi composite film in 0.0943 M aniline, 0.9024 M HCl and using a scanning rate of 27.88 mV <em>s</em> <sup>−</sup> <sup>1</sup> is 2013.2 μA mM<sup>−1</sup> cm<sup>−2</sup>, which is 54.9% better than the sensitivity of a conventional experimental technique. The amperometric creatinine biosensor is 6.60% less sensitive after sensing 0.15 mM creatinine 240 times. The amperometric creatinine biosensor incurs insignificant interference in 0.138 mM urea, 0.085 mM ascorbic acid (AA) and 5.54 mM glucose.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"5 \",\"pages\":\"Article 100135\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053922000625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053922000625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimizing the sensing performance of amperometric creatinine detection based on creatinine deiminase/Nafion®-nanostructured polyaniline composite film by mixture design method
Nafion®-nanostructured polyaniline (nsPANi) composite film is prepared using cyclic voltammetry (CV) and immobilized with creatinine deiminase (CD) enzyme and is used to sense creatinine in a buffer phosphate solution. The conditions for preparing Nafion®-nsPANi composite film are optimized by using a mixture design for which the sensitivity is the response. The relationship between the sensitivity of the amperometric creatinine biosensor (y) and the normalized aniline concentration (Y1), HCl concentration (Y2) and scanning rate (Y3) is y = 119.44Y1 + 45.23Y2 + 100.93Y3 + 255.69Y1Y2 + 313.16Y1Y3 + 430.56Y1Y2Y3
The maximum sensitivity of an amperometric creatinine biosensor that is constructed using Nafion®-nsPANi composite film in 0.0943 M aniline, 0.9024 M HCl and using a scanning rate of 27.88 mV s−1 is 2013.2 μA mM−1 cm−2, which is 54.9% better than the sensitivity of a conventional experimental technique. The amperometric creatinine biosensor is 6.60% less sensitive after sensing 0.15 mM creatinine 240 times. The amperometric creatinine biosensor incurs insignificant interference in 0.138 mM urea, 0.085 mM ascorbic acid (AA) and 5.54 mM glucose.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.