Jiajia Wu, Mingxu Wang, Li Dong, Jian Shi, Masatoshi Ohyama, Yasuhiro Kohsaka, Chunhong Zhu* and Hideaki Morikawa*,
{"title":"一种用于穿戴式个人热管理的三模热调节柔性纤维膜","authors":"Jiajia Wu, Mingxu Wang, Li Dong, Jian Shi, Masatoshi Ohyama, Yasuhiro Kohsaka, Chunhong Zhu* and Hideaki Morikawa*, ","doi":"10.1021/acsnano.2c04971","DOIUrl":null,"url":null,"abstract":"<p >Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core–sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 8","pages":"12801–12812"},"PeriodicalIF":16.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management\",\"authors\":\"Jiajia Wu, Mingxu Wang, Li Dong, Jian Shi, Masatoshi Ohyama, Yasuhiro Kohsaka, Chunhong Zhu* and Hideaki Morikawa*, \",\"doi\":\"10.1021/acsnano.2c04971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core–sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"16 8\",\"pages\":\"12801–12812\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.2c04971\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.2c04971","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management
Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core–sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.