选择有代表性的地质实现,模拟不确定条件下的地下二氧化碳储存

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS
Seyed Kourosh Mahjour, Salah A. Faroughi
{"title":"选择有代表性的地质实现,模拟不确定条件下的地下二氧化碳储存","authors":"Seyed Kourosh Mahjour,&nbsp;Salah A. Faroughi","doi":"10.1016/j.ijggc.2023.103920","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Carbon capture and storage (CCS) is one of the quickest and most effective solutions for reducing </span>carbon emissions. The majority of subsurface storage occurs in saline aquifers, for which geological information is lacking which in turn results in geological uncertainty. To evaluate uncertainty in </span><span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> injection projections, the use of multiple geological realizations (GRs) has been practiced very commonly. In this approach, hundreds or thousands of high-resolution GRs is used that quickly becomes computationally expensive. This issue can be addressed with representative geological realizations (RGRs) that preserve the uncertainty domain of the ensemble GRs. In this study, we propose the use of unsupervised machine learning (UML) frameworks, including dissimilarity measurement, dimensionality reduction, clustering and sampling algorithms ta select a predetermined number of RGRs. We compare the simulation outputs of the RGR sets and the ensemble using the Kolmogorov–Smirnov (KS) test to select the best UML. The UML frameworks and their associated selection processes are evaluated using a saline aquifer with a single </span><span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection well and 200 GRs with varying uncertain petrophysical characteristics. The best UML framework is selected to use only 5% of the GRs while maintaining the uncertainty domain of the ensemble GRs. In addition, the best UML framework is tested using a saline aquifer with three <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection wells and varied GRs. The results show that our proposed UML framework can be used to choose RGRs, capturing the whole uncertainty domain. Our approach leads to a significant reduction in the computational cost associated with scenario testing, decision-making, and development planning for <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage sites under geological uncertainty.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"127 ","pages":"Article 103920"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Selecting representative geological realizations to model subsurface CO2 storage under uncertainty\",\"authors\":\"Seyed Kourosh Mahjour,&nbsp;Salah A. Faroughi\",\"doi\":\"10.1016/j.ijggc.2023.103920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Carbon capture and storage (CCS) is one of the quickest and most effective solutions for reducing </span>carbon emissions. The majority of subsurface storage occurs in saline aquifers, for which geological information is lacking which in turn results in geological uncertainty. To evaluate uncertainty in </span><span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> injection projections, the use of multiple geological realizations (GRs) has been practiced very commonly. In this approach, hundreds or thousands of high-resolution GRs is used that quickly becomes computationally expensive. This issue can be addressed with representative geological realizations (RGRs) that preserve the uncertainty domain of the ensemble GRs. In this study, we propose the use of unsupervised machine learning (UML) frameworks, including dissimilarity measurement, dimensionality reduction, clustering and sampling algorithms ta select a predetermined number of RGRs. We compare the simulation outputs of the RGR sets and the ensemble using the Kolmogorov–Smirnov (KS) test to select the best UML. The UML frameworks and their associated selection processes are evaluated using a saline aquifer with a single </span><span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection well and 200 GRs with varying uncertain petrophysical characteristics. The best UML framework is selected to use only 5% of the GRs while maintaining the uncertainty domain of the ensemble GRs. In addition, the best UML framework is tested using a saline aquifer with three <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection wells and varied GRs. The results show that our proposed UML framework can be used to choose RGRs, capturing the whole uncertainty domain. Our approach leads to a significant reduction in the computational cost associated with scenario testing, decision-making, and development planning for <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage sites under geological uncertainty.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"127 \",\"pages\":\"Article 103920\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583623000907\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583623000907","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 7

摘要

碳捕获与封存(CCS)是减少碳排放最快、最有效的解决方案之一。大多数地下储藏量发生在含盐含水层,缺乏地质资料,从而导致地质上的不确定性。为了评估二氧化碳注入预测的不确定性,多种地质实现(gr)的使用已经非常普遍。在这种方法中,使用了数百或数千个高分辨率的gr,这很快就会变得计算昂贵。这个问题可以通过代表性的地质实现(RGRs)来解决,它保留了集合GRs的不确定域。在本研究中,我们建议使用无监督机器学习(UML)框架,包括不相似性测量、降维、聚类和抽样算法来选择预定数量的rgr。我们使用Kolmogorov-Smirnov (KS)测试来比较RGR集和集合的模拟输出,以选择最佳UML。UML框架及其相关的选择过程使用含盐含水层和单个CO2注入井以及200个具有不同不确定岩石物理特征的gr进行评估。选择最好的UML框架,只使用5%的GRs,同时维护集成GRs的不确定域。此外,使用含3口CO2注入井和不同gr的盐水含水层对最佳UML框架进行了测试。结果表明,我们提出的UML框架可以用来选择rgr,捕获整个不确定性域。我们的方法显著降低了与地质不确定性下二氧化碳储存地点的情景测试、决策和开发规划相关的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting representative geological realizations to model subsurface CO2 storage under uncertainty

Carbon capture and storage (CCS) is one of the quickest and most effective solutions for reducing carbon emissions. The majority of subsurface storage occurs in saline aquifers, for which geological information is lacking which in turn results in geological uncertainty. To evaluate uncertainty in CO2 injection projections, the use of multiple geological realizations (GRs) has been practiced very commonly. In this approach, hundreds or thousands of high-resolution GRs is used that quickly becomes computationally expensive. This issue can be addressed with representative geological realizations (RGRs) that preserve the uncertainty domain of the ensemble GRs. In this study, we propose the use of unsupervised machine learning (UML) frameworks, including dissimilarity measurement, dimensionality reduction, clustering and sampling algorithms ta select a predetermined number of RGRs. We compare the simulation outputs of the RGR sets and the ensemble using the Kolmogorov–Smirnov (KS) test to select the best UML. The UML frameworks and their associated selection processes are evaluated using a saline aquifer with a single CO2 injection well and 200 GRs with varying uncertain petrophysical characteristics. The best UML framework is selected to use only 5% of the GRs while maintaining the uncertainty domain of the ensemble GRs. In addition, the best UML framework is tested using a saline aquifer with three CO2 injection wells and varied GRs. The results show that our proposed UML framework can be used to choose RGRs, capturing the whole uncertainty domain. Our approach leads to a significant reduction in the computational cost associated with scenario testing, decision-making, and development planning for CO2 storage sites under geological uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信