Zhiqiang Wu , Renlu Qiao , Shuang Zhao , Xiaochang Liu , Shuo Gao , Zhiyu Liu , Xiang Ao , Shiqi Zhou , Zhensheng Wang , Qingrui Jiang
{"title":"基于贝叶斯优化集成学习的城市热环境非线性力研究","authors":"Zhiqiang Wu , Renlu Qiao , Shuang Zhao , Xiaochang Liu , Shuo Gao , Zhiyu Liu , Xiang Ao , Shiqi Zhou , Zhensheng Wang , Qingrui Jiang","doi":"10.1016/j.scitotenv.2022.156348","DOIUrl":null,"url":null,"abstract":"<div><p>Urbanization witnessed unprecedented development globally, which causes citizens and urban temperature to become increasingly intertwined. Although researchers were interested in the field, most studies focused on holistic linear links between the characteristics of the urban built-up environment and temperature. The study used Bayesian optimization ensemble learning and Shapley value to decouple the urban thermal environment by Landsat satellite data. This work's novelties reveal the specific driving effect of different value ranges of urban features in the overall process on the urban thermal environment and advancing an optimum observation buffer zone of the urban surface temperature. The study's results were only for daytime and Beijing scope. The following are the main findings: (1) The 2 km observation buffer zone is best to analyze the urban thermal environment for this dataset. (2) The ecological environment factors have a more significant effect on the urban temperature than the urban morphology factors. (3) In summer, when the vegetation coverage exceeds 58.1%, every 10% increase could reduce the temperature by 0.84 °C. In contrast to summer, when vegetation coverage exceeds 64.7% and 73.2%, respectively, in spring and fall, there will be a significant marginal utility. (4) The effect of the building height has seasonal variations. It has the greatest cooling effect in the spring when the height is between 18 m and 75 m, and the daytime surface temperature at the time of Landsat overpass will drop by 1.25 °C. These findings will aid in understanding how building construction influences urban surface temperature and provide statistical support for planners.</p></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"838 ","pages":"Article 156348"},"PeriodicalIF":8.2000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Nonlinear forces in urban thermal environment using Bayesian optimization-based ensemble learning\",\"authors\":\"Zhiqiang Wu , Renlu Qiao , Shuang Zhao , Xiaochang Liu , Shuo Gao , Zhiyu Liu , Xiang Ao , Shiqi Zhou , Zhensheng Wang , Qingrui Jiang\",\"doi\":\"10.1016/j.scitotenv.2022.156348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urbanization witnessed unprecedented development globally, which causes citizens and urban temperature to become increasingly intertwined. Although researchers were interested in the field, most studies focused on holistic linear links between the characteristics of the urban built-up environment and temperature. The study used Bayesian optimization ensemble learning and Shapley value to decouple the urban thermal environment by Landsat satellite data. This work's novelties reveal the specific driving effect of different value ranges of urban features in the overall process on the urban thermal environment and advancing an optimum observation buffer zone of the urban surface temperature. The study's results were only for daytime and Beijing scope. The following are the main findings: (1) The 2 km observation buffer zone is best to analyze the urban thermal environment for this dataset. (2) The ecological environment factors have a more significant effect on the urban temperature than the urban morphology factors. (3) In summer, when the vegetation coverage exceeds 58.1%, every 10% increase could reduce the temperature by 0.84 °C. In contrast to summer, when vegetation coverage exceeds 64.7% and 73.2%, respectively, in spring and fall, there will be a significant marginal utility. (4) The effect of the building height has seasonal variations. It has the greatest cooling effect in the spring when the height is between 18 m and 75 m, and the daytime surface temperature at the time of Landsat overpass will drop by 1.25 °C. These findings will aid in understanding how building construction influences urban surface temperature and provide statistical support for planners.</p></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"838 \",\"pages\":\"Article 156348\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969722034453\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969722034453","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nonlinear forces in urban thermal environment using Bayesian optimization-based ensemble learning
Urbanization witnessed unprecedented development globally, which causes citizens and urban temperature to become increasingly intertwined. Although researchers were interested in the field, most studies focused on holistic linear links between the characteristics of the urban built-up environment and temperature. The study used Bayesian optimization ensemble learning and Shapley value to decouple the urban thermal environment by Landsat satellite data. This work's novelties reveal the specific driving effect of different value ranges of urban features in the overall process on the urban thermal environment and advancing an optimum observation buffer zone of the urban surface temperature. The study's results were only for daytime and Beijing scope. The following are the main findings: (1) The 2 km observation buffer zone is best to analyze the urban thermal environment for this dataset. (2) The ecological environment factors have a more significant effect on the urban temperature than the urban morphology factors. (3) In summer, when the vegetation coverage exceeds 58.1%, every 10% increase could reduce the temperature by 0.84 °C. In contrast to summer, when vegetation coverage exceeds 64.7% and 73.2%, respectively, in spring and fall, there will be a significant marginal utility. (4) The effect of the building height has seasonal variations. It has the greatest cooling effect in the spring when the height is between 18 m and 75 m, and the daytime surface temperature at the time of Landsat overpass will drop by 1.25 °C. These findings will aid in understanding how building construction influences urban surface temperature and provide statistical support for planners.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.