Wei Chu, Kangkang Guo, Yiheng Tong, Xiuqian Li, Wansheng Nie
{"title":"MMH/NTO火箭燃烧室自激切向燃烧不稳定性数值分析","authors":"Wei Chu, Kangkang Guo, Yiheng Tong, Xiuqian Li, Wansheng Nie","doi":"10.1016/j.proci.2022.07.249","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This study presented the numerical simulation of the tangential combustion instability in a hypergolic liquid bipropellant rocket thrust chamber, which applied fuel liquid film cooling method and unlike impinging injectors<span>. The liquid spray was modeled using Lagrangian approach, while the gas was regarded as Euler phase. Stress-blended eddy simulation and finite rate/eddy–dissipation model were adopted to simulate the turbulent </span></span>combustion process<span>. Consistent with the experiment results, this work successfully simulated the transformation of tangential combustion instability from standing mode to spinning mode. The mean pressure, amplitude and frequency of limit cycle oscillation were in good agreement with the experiment. There was a detailed analysis about the flow field, Rayleigh index, and driving mechanism of the combustion instability. It was found that the oscillation began with hot spots of heat release rate due to the interaction between the spray of impinging injectors and cooling fuel jet. More than that, cooling fuel jet also contributed to drive the oscillation. In the standing mode, injectors in the inner and outer rings drive the oscillation together, while the spinning mode is mainly driven by injectors in the outer ring. The pressure wave is subsonic and its </span></span>Mach number<span> is close to 1. It was shown that the pressure wave contained a complex structure divided into three parts. This led to the in-phase of the pressure along the axial direction<span> and the double-peak characteristic of the downstream pressure signal. Besides, a positive feedback closed-loop system associated with periodic oxidizer/fuel ratio was believed to sustain the combustion instability. The oscillation can be maintained when pressure, heat release and oxidizer/fuel ratio are coupled together. The analysis results indicate that rotating detonation is an implication to tangential combustion instability.</span></span></p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 4","pages":"Pages 5053-5061"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of self-excited tangential combustion instability for an MMH/NTO rocket combustor\",\"authors\":\"Wei Chu, Kangkang Guo, Yiheng Tong, Xiuqian Li, Wansheng Nie\",\"doi\":\"10.1016/j.proci.2022.07.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This study presented the numerical simulation of the tangential combustion instability in a hypergolic liquid bipropellant rocket thrust chamber, which applied fuel liquid film cooling method and unlike impinging injectors<span>. The liquid spray was modeled using Lagrangian approach, while the gas was regarded as Euler phase. Stress-blended eddy simulation and finite rate/eddy–dissipation model were adopted to simulate the turbulent </span></span>combustion process<span>. Consistent with the experiment results, this work successfully simulated the transformation of tangential combustion instability from standing mode to spinning mode. The mean pressure, amplitude and frequency of limit cycle oscillation were in good agreement with the experiment. There was a detailed analysis about the flow field, Rayleigh index, and driving mechanism of the combustion instability. It was found that the oscillation began with hot spots of heat release rate due to the interaction between the spray of impinging injectors and cooling fuel jet. More than that, cooling fuel jet also contributed to drive the oscillation. In the standing mode, injectors in the inner and outer rings drive the oscillation together, while the spinning mode is mainly driven by injectors in the outer ring. The pressure wave is subsonic and its </span></span>Mach number<span> is close to 1. It was shown that the pressure wave contained a complex structure divided into three parts. This led to the in-phase of the pressure along the axial direction<span> and the double-peak characteristic of the downstream pressure signal. Besides, a positive feedback closed-loop system associated with periodic oxidizer/fuel ratio was believed to sustain the combustion instability. The oscillation can be maintained when pressure, heat release and oxidizer/fuel ratio are coupled together. The analysis results indicate that rotating detonation is an implication to tangential combustion instability.</span></span></p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 4\",\"pages\":\"Pages 5053-5061\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922003017\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922003017","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical analysis of self-excited tangential combustion instability for an MMH/NTO rocket combustor
This study presented the numerical simulation of the tangential combustion instability in a hypergolic liquid bipropellant rocket thrust chamber, which applied fuel liquid film cooling method and unlike impinging injectors. The liquid spray was modeled using Lagrangian approach, while the gas was regarded as Euler phase. Stress-blended eddy simulation and finite rate/eddy–dissipation model were adopted to simulate the turbulent combustion process. Consistent with the experiment results, this work successfully simulated the transformation of tangential combustion instability from standing mode to spinning mode. The mean pressure, amplitude and frequency of limit cycle oscillation were in good agreement with the experiment. There was a detailed analysis about the flow field, Rayleigh index, and driving mechanism of the combustion instability. It was found that the oscillation began with hot spots of heat release rate due to the interaction between the spray of impinging injectors and cooling fuel jet. More than that, cooling fuel jet also contributed to drive the oscillation. In the standing mode, injectors in the inner and outer rings drive the oscillation together, while the spinning mode is mainly driven by injectors in the outer ring. The pressure wave is subsonic and its Mach number is close to 1. It was shown that the pressure wave contained a complex structure divided into three parts. This led to the in-phase of the pressure along the axial direction and the double-peak characteristic of the downstream pressure signal. Besides, a positive feedback closed-loop system associated with periodic oxidizer/fuel ratio was believed to sustain the combustion instability. The oscillation can be maintained when pressure, heat release and oxidizer/fuel ratio are coupled together. The analysis results indicate that rotating detonation is an implication to tangential combustion instability.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.