{"title":"碳纤维与PDMS混合物在90°弯头通道内流动的对准","authors":"Hoang Minh Khoa Nguyen, Dong-Wook Oh","doi":"10.1016/j.ijmultiphaseflow.2023.104470","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, flow visualization experiments and computational fluid dynamics simulations are conducted to analyze the rotation of carbon fibers flowing in a 90° elbow channel. In the corner of the 90° elbow channel, a directional change in velocities and velocity gradients results in the rotation of the fibers from a horizontal to vertical alignment. To analyze the fiber rotation, a mixture comprising uncured polydimethylsiloxane and ball-milled carbon fibers is utilized as the working fluid in a flow visualization experiment. The velocity and velocity gradients inside the channel are calculated via computational fluid dynamics simulation and then compared with the angular changes in the fiber rotation along different trajectories inside the elbow corner. A Lagrangian approach using a local coordinate system to trail each fiber along the trajectory is utilized to compare the effects of shear rate on fiber rotation. It is discovered that the fibers are affected by a relatively high local shear rate, and that they propagate with the flow, indicating a parallel alignment in the flow direction while exhibiting a 90° turn at the elbow corner.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"165 ","pages":"Article 104470"},"PeriodicalIF":3.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alignment of carbon fiber and PDMS mixture flowing in 90° elbow channel\",\"authors\":\"Hoang Minh Khoa Nguyen, Dong-Wook Oh\",\"doi\":\"10.1016/j.ijmultiphaseflow.2023.104470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, flow visualization experiments and computational fluid dynamics simulations are conducted to analyze the rotation of carbon fibers flowing in a 90° elbow channel. In the corner of the 90° elbow channel, a directional change in velocities and velocity gradients results in the rotation of the fibers from a horizontal to vertical alignment. To analyze the fiber rotation, a mixture comprising uncured polydimethylsiloxane and ball-milled carbon fibers is utilized as the working fluid in a flow visualization experiment. The velocity and velocity gradients inside the channel are calculated via computational fluid dynamics simulation and then compared with the angular changes in the fiber rotation along different trajectories inside the elbow corner. A Lagrangian approach using a local coordinate system to trail each fiber along the trajectory is utilized to compare the effects of shear rate on fiber rotation. It is discovered that the fibers are affected by a relatively high local shear rate, and that they propagate with the flow, indicating a parallel alignment in the flow direction while exhibiting a 90° turn at the elbow corner.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"165 \",\"pages\":\"Article 104470\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932223000915\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932223000915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Alignment of carbon fiber and PDMS mixture flowing in 90° elbow channel
In this study, flow visualization experiments and computational fluid dynamics simulations are conducted to analyze the rotation of carbon fibers flowing in a 90° elbow channel. In the corner of the 90° elbow channel, a directional change in velocities and velocity gradients results in the rotation of the fibers from a horizontal to vertical alignment. To analyze the fiber rotation, a mixture comprising uncured polydimethylsiloxane and ball-milled carbon fibers is utilized as the working fluid in a flow visualization experiment. The velocity and velocity gradients inside the channel are calculated via computational fluid dynamics simulation and then compared with the angular changes in the fiber rotation along different trajectories inside the elbow corner. A Lagrangian approach using a local coordinate system to trail each fiber along the trajectory is utilized to compare the effects of shear rate on fiber rotation. It is discovered that the fibers are affected by a relatively high local shear rate, and that they propagate with the flow, indicating a parallel alignment in the flow direction while exhibiting a 90° turn at the elbow corner.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.