Y G Caine, I Vlodavsky, M Hersh, A Polliack, D Gurfel, R Or, R F Levine, A Eldor
{"title":"暴露于内皮下细胞外基质的人巨核细胞的粘附、扩散和碎裂:扫描电镜研究。","authors":"Y G Caine, I Vlodavsky, M Hersh, A Polliack, D Gurfel, R Or, R F Levine, A Eldor","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Platelet agonists and subendothelial extracellular matrix (ECM) induce morphological and biochemical changes in animal megakaryocytes, reminiscent of the response of platelets to the same substances. We have examined the behavior of human megakaryocytes exposed for up to 36 hours to the ECM produced by cultured bovine corneal endothelial cells. By phase contrast and scanning electron microscopy these megakaryocytes demonstrated non-reversible adherence and flattening with formation of long filopodia, thus confirming that human megakaryocytes acquire platelet functional capacities. In addition, megakaryocyte fragmentation into prospective platelets was apparently induced by the ECM. Up to 50% of the adherent megakaryocytes underwent spontaneous fragmentation into small particles which individually reacted like platelets on the ECM. The interaction of the megakaryocytes with the ECM was specific since no adherence, flattening or fragmentation occurred upon incubation of the megakaryocytes on regular tissue culture plastic or glutaraldehyde fixed ECM. Thus we have demonstrated platelet like behaviour of human megakaryocytes in response to this physiological basement membrane and a possible role of the subendothelium in platelet production which may occur in vivo as megakaryocytes cross the sinusoid walls and enter the blood stream.</p>","PeriodicalId":21455,"journal":{"name":"Scanning electron microscopy","volume":" Pt 3","pages":"1087-94"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhesion, spreading and fragmentation of human megakaryocytes exposed to subendothelial extracellular matrix: a scanning electron microscopy study.\",\"authors\":\"Y G Caine, I Vlodavsky, M Hersh, A Polliack, D Gurfel, R Or, R F Levine, A Eldor\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Platelet agonists and subendothelial extracellular matrix (ECM) induce morphological and biochemical changes in animal megakaryocytes, reminiscent of the response of platelets to the same substances. We have examined the behavior of human megakaryocytes exposed for up to 36 hours to the ECM produced by cultured bovine corneal endothelial cells. By phase contrast and scanning electron microscopy these megakaryocytes demonstrated non-reversible adherence and flattening with formation of long filopodia, thus confirming that human megakaryocytes acquire platelet functional capacities. In addition, megakaryocyte fragmentation into prospective platelets was apparently induced by the ECM. Up to 50% of the adherent megakaryocytes underwent spontaneous fragmentation into small particles which individually reacted like platelets on the ECM. The interaction of the megakaryocytes with the ECM was specific since no adherence, flattening or fragmentation occurred upon incubation of the megakaryocytes on regular tissue culture plastic or glutaraldehyde fixed ECM. Thus we have demonstrated platelet like behaviour of human megakaryocytes in response to this physiological basement membrane and a possible role of the subendothelium in platelet production which may occur in vivo as megakaryocytes cross the sinusoid walls and enter the blood stream.</p>\",\"PeriodicalId\":21455,\"journal\":{\"name\":\"Scanning electron microscopy\",\"volume\":\" Pt 3\",\"pages\":\"1087-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scanning electron microscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scanning electron microscopy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adhesion, spreading and fragmentation of human megakaryocytes exposed to subendothelial extracellular matrix: a scanning electron microscopy study.
Platelet agonists and subendothelial extracellular matrix (ECM) induce morphological and biochemical changes in animal megakaryocytes, reminiscent of the response of platelets to the same substances. We have examined the behavior of human megakaryocytes exposed for up to 36 hours to the ECM produced by cultured bovine corneal endothelial cells. By phase contrast and scanning electron microscopy these megakaryocytes demonstrated non-reversible adherence and flattening with formation of long filopodia, thus confirming that human megakaryocytes acquire platelet functional capacities. In addition, megakaryocyte fragmentation into prospective platelets was apparently induced by the ECM. Up to 50% of the adherent megakaryocytes underwent spontaneous fragmentation into small particles which individually reacted like platelets on the ECM. The interaction of the megakaryocytes with the ECM was specific since no adherence, flattening or fragmentation occurred upon incubation of the megakaryocytes on regular tissue culture plastic or glutaraldehyde fixed ECM. Thus we have demonstrated platelet like behaviour of human megakaryocytes in response to this physiological basement membrane and a possible role of the subendothelium in platelet production which may occur in vivo as megakaryocytes cross the sinusoid walls and enter the blood stream.