粒细胞堵塞毛细血管和微循环无回流现象。

Federation proceedings Pub Date : 1987-05-15
G W Schmid-Schönbein
{"title":"粒细胞堵塞毛细血管和微循环无回流现象。","authors":"G W Schmid-Schönbein","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Granulocytes are large, stiff viscoelastic cells that adhere naturally to the vascular endothelium. On their passage through the capillary network they have to be deformed, and recent evidence indicates that they may impose a significant hemodynamic resistance. The entry time of granulocytes into capillaries is about three orders of magnitude longer than that for red cells. Inside the capillary the granulocytes move with a lower velocity than red cells. Under conditions when the capillary perfusion pressure is reduced and/or elevated levels of inflammatory products are present that increase the adhesion stress to the endothelium, granulocytes may become stuck in the capillary. In such a situation, the granulocytes form a large contact area with the capillary endothelium, they obstruct the lumen, and they may initiate tissue injury. After the restoration of the perfusion pressure the granulocytes may not be removed from the capillary owing to the adhesion to the endothelium. Capillary plugging by granulocytes appears to be the mechanism responsible for the no-reflow phenomenon, and together with oxygen free radical formation and lysosomal enzyme activity may constitute the origin for ischemic injury as well as other microvascular occlusive diseases.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 7","pages":"2397-401"},"PeriodicalIF":0.0000,"publicationDate":"1987-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation.\",\"authors\":\"G W Schmid-Schönbein\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Granulocytes are large, stiff viscoelastic cells that adhere naturally to the vascular endothelium. On their passage through the capillary network they have to be deformed, and recent evidence indicates that they may impose a significant hemodynamic resistance. The entry time of granulocytes into capillaries is about three orders of magnitude longer than that for red cells. Inside the capillary the granulocytes move with a lower velocity than red cells. Under conditions when the capillary perfusion pressure is reduced and/or elevated levels of inflammatory products are present that increase the adhesion stress to the endothelium, granulocytes may become stuck in the capillary. In such a situation, the granulocytes form a large contact area with the capillary endothelium, they obstruct the lumen, and they may initiate tissue injury. After the restoration of the perfusion pressure the granulocytes may not be removed from the capillary owing to the adhesion to the endothelium. Capillary plugging by granulocytes appears to be the mechanism responsible for the no-reflow phenomenon, and together with oxygen free radical formation and lysosomal enzyme activity may constitute the origin for ischemic injury as well as other microvascular occlusive diseases.</p>\",\"PeriodicalId\":12183,\"journal\":{\"name\":\"Federation proceedings\",\"volume\":\"46 7\",\"pages\":\"2397-401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federation proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒细胞是大而硬的粘弹性细胞,自然粘附在血管内皮上。在它们通过毛细血管网络时,它们必须变形,最近的证据表明,它们可能会施加显著的血流动力学阻力。粒细胞进入毛细血管的时间比红细胞要长三个数量级。在毛细血管内,粒细胞的运动速度比红细胞慢。当毛细血管灌注压力降低和/或炎症产物水平升高,增加内皮的粘附应力时,粒细胞可能会卡在毛细血管中。在这种情况下,粒细胞与毛细血管内皮形成大面积接触,阻塞管腔,并可能引发组织损伤。灌注压力恢复后,由于粒细胞与内皮的粘附,可能无法从毛细血管中清除。粒细胞堵塞毛细血管可能是造成无血流现象的机制,并与氧自由基的形成和溶酶体酶活性一起可能构成缺血性损伤和其他微血管闭塞性疾病的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation.

Granulocytes are large, stiff viscoelastic cells that adhere naturally to the vascular endothelium. On their passage through the capillary network they have to be deformed, and recent evidence indicates that they may impose a significant hemodynamic resistance. The entry time of granulocytes into capillaries is about three orders of magnitude longer than that for red cells. Inside the capillary the granulocytes move with a lower velocity than red cells. Under conditions when the capillary perfusion pressure is reduced and/or elevated levels of inflammatory products are present that increase the adhesion stress to the endothelium, granulocytes may become stuck in the capillary. In such a situation, the granulocytes form a large contact area with the capillary endothelium, they obstruct the lumen, and they may initiate tissue injury. After the restoration of the perfusion pressure the granulocytes may not be removed from the capillary owing to the adhesion to the endothelium. Capillary plugging by granulocytes appears to be the mechanism responsible for the no-reflow phenomenon, and together with oxygen free radical formation and lysosomal enzyme activity may constitute the origin for ischemic injury as well as other microvascular occlusive diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信