{"title":"固定对有丝分裂染色体形态的影响。","authors":"A J Dietrich","doi":"10.1139/g86-078","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that there is a strong influence of fixation, i.e., acetic methanol versus formaldehyde, on the chromosome morphology at stages of the first meiotic division. In this study the influence of both these types of fixation on the morphology of mitotic chromosomes was examined in human lymphocytes. After methanol-acetic acid (3:1) fixation, the chromosomes show the \"classical\" condensed shape in which it is not always possible to recognize the two sister chromatids. These chromosomes are accessible to the conventional G-, R-, and C-banding techniques. After formaldehyde fixation at a relatively high pH, the chromosomes are thinner and longer (two to six times) when compared with chromosomes following methanol-acetic acid fixation. They show a scaffold-like morphology, sometimes with a halo of thin material around it. In all cases the two sister chromatids could be recognized. This chromosome structure could be easily stained with silver, Giemsa, 4,6-diamino-2-phenyl-indole (DAPI), and fluorescein isocyanate isomere 1 (FITC). The results obtained following these stainings gave no indication to any specific chemical composition of a probable central scaffold. The scaffold-like structures were not accessible to G-, R-, or C-banding techniques. The only effect observed following these banding techniques was the disappearance of the halo of thin material around the central scaffold-like structure.</p>","PeriodicalId":9589,"journal":{"name":"Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie","volume":"28 4","pages":"536-9"},"PeriodicalIF":0.0000,"publicationDate":"1986-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/g86-078","citationCount":"8","resultStr":"{\"title\":\"The influence of fixation on the morphology of mitotic chromosomes.\",\"authors\":\"A J Dietrich\",\"doi\":\"10.1139/g86-078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well known that there is a strong influence of fixation, i.e., acetic methanol versus formaldehyde, on the chromosome morphology at stages of the first meiotic division. In this study the influence of both these types of fixation on the morphology of mitotic chromosomes was examined in human lymphocytes. After methanol-acetic acid (3:1) fixation, the chromosomes show the \\\"classical\\\" condensed shape in which it is not always possible to recognize the two sister chromatids. These chromosomes are accessible to the conventional G-, R-, and C-banding techniques. After formaldehyde fixation at a relatively high pH, the chromosomes are thinner and longer (two to six times) when compared with chromosomes following methanol-acetic acid fixation. They show a scaffold-like morphology, sometimes with a halo of thin material around it. In all cases the two sister chromatids could be recognized. This chromosome structure could be easily stained with silver, Giemsa, 4,6-diamino-2-phenyl-indole (DAPI), and fluorescein isocyanate isomere 1 (FITC). The results obtained following these stainings gave no indication to any specific chemical composition of a probable central scaffold. The scaffold-like structures were not accessible to G-, R-, or C-banding techniques. The only effect observed following these banding techniques was the disappearance of the halo of thin material around the central scaffold-like structure.</p>\",\"PeriodicalId\":9589,\"journal\":{\"name\":\"Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie\",\"volume\":\"28 4\",\"pages\":\"536-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/g86-078\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/g86-078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/g86-078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The influence of fixation on the morphology of mitotic chromosomes.
It is well known that there is a strong influence of fixation, i.e., acetic methanol versus formaldehyde, on the chromosome morphology at stages of the first meiotic division. In this study the influence of both these types of fixation on the morphology of mitotic chromosomes was examined in human lymphocytes. After methanol-acetic acid (3:1) fixation, the chromosomes show the "classical" condensed shape in which it is not always possible to recognize the two sister chromatids. These chromosomes are accessible to the conventional G-, R-, and C-banding techniques. After formaldehyde fixation at a relatively high pH, the chromosomes are thinner and longer (two to six times) when compared with chromosomes following methanol-acetic acid fixation. They show a scaffold-like morphology, sometimes with a halo of thin material around it. In all cases the two sister chromatids could be recognized. This chromosome structure could be easily stained with silver, Giemsa, 4,6-diamino-2-phenyl-indole (DAPI), and fluorescein isocyanate isomere 1 (FITC). The results obtained following these stainings gave no indication to any specific chemical composition of a probable central scaffold. The scaffold-like structures were not accessible to G-, R-, or C-banding techniques. The only effect observed following these banding techniques was the disappearance of the halo of thin material around the central scaffold-like structure.