Caroline Hali Alperovitz, Noa Ben David, Adi Gross, Boaz Mizrahi
{"title":"利用微针副青衣芽孢杆菌原位生产生物聚合物的生物材料方法。","authors":"Caroline Hali Alperovitz, Noa Ben David, Adi Gross, Boaz Mizrahi","doi":"10.1002/adhm.202503630","DOIUrl":null,"url":null,"abstract":"<p><p>Living biomaterials, which integrate live organisms with traditional macromolecular scaffolds, function as \"live manufacturers\" capable of sensing their environment, synthesizing, and releasing biomolecules while remaining stable under physiological conditions. While systems that produce small biomolecules continue to advance, in situ production and secretion of high-molecular-weight biopolymers remain relatively underexplored. Here, a microneedle (MN) patch system is presented encapsulating Bacillus paralicheniformis (B. paralicheniformis) - a non-pathogenic, Gram-positive bacterium known for its production of γ-polyglutamic acid (γ-PGA). The MNs are designed to painlessly penetrate the stratum corneum and reach the dermis. Bacteria are uniformly distributed within the patch, and their presence has minimal impact on the microneedles' morphology and mechanical integrity. Upon application, B. paralicheniformis is released from the MNs and successfully produced γ-PGA, with molecular weights ranging from 64 to 563 kDa. Growth studies revealed that Luria-Bertani (LB) medium supports optimal bacterial proliferation, while E medium enhances γ-PGA biosynthesis. In vivo studies confirmed that B. paralicheniformis colonized mouse skin following MN administration and secreted γ-PGA without eliciting toxicity or inflammatory responses. Given the increasing therapeutic use of biopolymers and proteins for treating chronic and acute skin conditions, this living bacterial delivery system offers a promising platform for sustainable and symbiotic dermal therapies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03630"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Living Materials Approach for In Situ Bio-Polymers Production Using Bacillus Paralicheniformis in Microneedles.\",\"authors\":\"Caroline Hali Alperovitz, Noa Ben David, Adi Gross, Boaz Mizrahi\",\"doi\":\"10.1002/adhm.202503630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Living biomaterials, which integrate live organisms with traditional macromolecular scaffolds, function as \\\"live manufacturers\\\" capable of sensing their environment, synthesizing, and releasing biomolecules while remaining stable under physiological conditions. While systems that produce small biomolecules continue to advance, in situ production and secretion of high-molecular-weight biopolymers remain relatively underexplored. Here, a microneedle (MN) patch system is presented encapsulating Bacillus paralicheniformis (B. paralicheniformis) - a non-pathogenic, Gram-positive bacterium known for its production of γ-polyglutamic acid (γ-PGA). The MNs are designed to painlessly penetrate the stratum corneum and reach the dermis. Bacteria are uniformly distributed within the patch, and their presence has minimal impact on the microneedles' morphology and mechanical integrity. Upon application, B. paralicheniformis is released from the MNs and successfully produced γ-PGA, with molecular weights ranging from 64 to 563 kDa. Growth studies revealed that Luria-Bertani (LB) medium supports optimal bacterial proliferation, while E medium enhances γ-PGA biosynthesis. In vivo studies confirmed that B. paralicheniformis colonized mouse skin following MN administration and secreted γ-PGA without eliciting toxicity or inflammatory responses. Given the increasing therapeutic use of biopolymers and proteins for treating chronic and acute skin conditions, this living bacterial delivery system offers a promising platform for sustainable and symbiotic dermal therapies.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e03630\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202503630\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503630","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Living Materials Approach for In Situ Bio-Polymers Production Using Bacillus Paralicheniformis in Microneedles.
Living biomaterials, which integrate live organisms with traditional macromolecular scaffolds, function as "live manufacturers" capable of sensing their environment, synthesizing, and releasing biomolecules while remaining stable under physiological conditions. While systems that produce small biomolecules continue to advance, in situ production and secretion of high-molecular-weight biopolymers remain relatively underexplored. Here, a microneedle (MN) patch system is presented encapsulating Bacillus paralicheniformis (B. paralicheniformis) - a non-pathogenic, Gram-positive bacterium known for its production of γ-polyglutamic acid (γ-PGA). The MNs are designed to painlessly penetrate the stratum corneum and reach the dermis. Bacteria are uniformly distributed within the patch, and their presence has minimal impact on the microneedles' morphology and mechanical integrity. Upon application, B. paralicheniformis is released from the MNs and successfully produced γ-PGA, with molecular weights ranging from 64 to 563 kDa. Growth studies revealed that Luria-Bertani (LB) medium supports optimal bacterial proliferation, while E medium enhances γ-PGA biosynthesis. In vivo studies confirmed that B. paralicheniformis colonized mouse skin following MN administration and secreted γ-PGA without eliciting toxicity or inflammatory responses. Given the increasing therapeutic use of biopolymers and proteins for treating chronic and acute skin conditions, this living bacterial delivery system offers a promising platform for sustainable and symbiotic dermal therapies.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.