{"title":"新拟合O+-O碰撞频率,包括精细结构效应","authors":"A. P. Hickman","doi":"10.1029/2025JA034494","DOIUrl":null,"url":null,"abstract":"<p>A new fit is presented for the oxygen ion-neutral collision frequency <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ν</mi>\n <mtext>in</mtext>\n </msub>\n </mrow>\n <annotation> ${\\nu }_{\\text{in}}$</annotation>\n </semantics></math>. The fit explicitly depends on the neutral temperature <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{n}}$</annotation>\n </semantics></math>, which characterizes the thermal distribution of fine structure levels of O(<sup>3</sup><span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mi>J</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <mi>J</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation> ${P}_{J},\\,J=0$</annotation>\n </semantics></math>,1,2), and the reduced temperature <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n <mo>=</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mfenced>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>n</mi>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>T</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}=\\frac{1}{2}\\left({T}_{\\mathrm{n}}+{T}_{\\mathrm{i}}\\right)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{i}}$</annotation>\n </semantics></math> is the ion temperature. A physically realistic fitting function adapted from the exact solution of a two-state system is constrained to approach plausible analytic models in the limits that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}$</annotation>\n </semantics></math> is high (Dalgarno's model, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n <mo>≳</mo>\n <mn>500</mn>\n <mspace></mspace>\n <mi>K</mi>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}\\gtrsim 500\\,\\mathrm{K}$</annotation>\n </semantics></math>) or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}$</annotation>\n </semantics></math> is low (Langevin's model, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n <mo>≲</mo>\n <mn>20</mn>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}\\lesssim 20$</annotation>\n </semantics></math>–50 K). The target data for the fit are determined from the cross sections calculated by Hickman et al. (1997, https://doi.org/10.1103/PhysRevA.56.4633) and their extrapolations to lower and higher energies using the Langevin and Dalgarno models. The fit reproduces the target data within 1% for any <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{n}}$</annotation>\n </semantics></math> and for any <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}$</annotation>\n </semantics></math> in the range <span></span><math>\n <semantics>\n <mrow>\n <mn>40</mn>\n <mspace></mspace>\n <mi>K</mi>\n <mo>≲</mo>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n <mo>≲</mo>\n <mn>10000</mn>\n <mspace></mspace>\n <mi>K</mi>\n </mrow>\n <annotation> $40\\,\\mathrm{K}\\lesssim {T}_{\\mathrm{r}}\\lesssim 10000\\,\\mathrm{K}$</annotation>\n </semantics></math>. The values of the fitting parameters suggest that the fine structure effect is more important than the effect of the long range ion-quadrupole and polarization potentials for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n <mo>≲</mo>\n <mn>500</mn>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}\\lesssim 500$</annotation>\n </semantics></math> K. A relationship is derived between the parameters of the Dalgarno model and the exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> of the power law dependence (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ν</mi>\n <mtext>in</mtext>\n </msub>\n <mo>∝</mo>\n <msubsup>\n <mi>T</mi>\n <mi>r</mi>\n <mi>λ</mi>\n </msubsup>\n </mrow>\n <annotation> ${\\nu }_{\\text{in}}\\propto {T}_{\\mathrm{r}}^{\\lambda }$</annotation>\n </semantics></math>) at high <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>r</mi>\n </msub>\n </mrow>\n <annotation> ${T}_{\\mathrm{r}}$</annotation>\n </semantics></math>.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034494","citationCount":"0","resultStr":"{\"title\":\"New Fit for the O+-O Collision Frequency Including Fine Structure Effects\",\"authors\":\"A. P. Hickman\",\"doi\":\"10.1029/2025JA034494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new fit is presented for the oxygen ion-neutral collision frequency <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ν</mi>\\n <mtext>in</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\nu }_{\\\\text{in}}$</annotation>\\n </semantics></math>. The fit explicitly depends on the neutral temperature <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{n}}$</annotation>\\n </semantics></math>, which characterizes the thermal distribution of fine structure levels of O(<sup>3</sup><span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n <mi>J</mi>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>J</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> ${P}_{J},\\\\,J=0$</annotation>\\n </semantics></math>,1,2), and the reduced temperature <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>=</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mfenced>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>T</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}=\\\\frac{1}{2}\\\\left({T}_{\\\\mathrm{n}}+{T}_{\\\\mathrm{i}}\\\\right)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>i</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{i}}$</annotation>\\n </semantics></math> is the ion temperature. A physically realistic fitting function adapted from the exact solution of a two-state system is constrained to approach plausible analytic models in the limits that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}$</annotation>\\n </semantics></math> is high (Dalgarno's model, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>≳</mo>\\n <mn>500</mn>\\n <mspace></mspace>\\n <mi>K</mi>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}\\\\gtrsim 500\\\\,\\\\mathrm{K}$</annotation>\\n </semantics></math>) or <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}$</annotation>\\n </semantics></math> is low (Langevin's model, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>≲</mo>\\n <mn>20</mn>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}\\\\lesssim 20$</annotation>\\n </semantics></math>–50 K). The target data for the fit are determined from the cross sections calculated by Hickman et al. (1997, https://doi.org/10.1103/PhysRevA.56.4633) and their extrapolations to lower and higher energies using the Langevin and Dalgarno models. The fit reproduces the target data within 1% for any <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{n}}$</annotation>\\n </semantics></math> and for any <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}$</annotation>\\n </semantics></math> in the range <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>40</mn>\\n <mspace></mspace>\\n <mi>K</mi>\\n <mo>≲</mo>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>≲</mo>\\n <mn>10000</mn>\\n <mspace></mspace>\\n <mi>K</mi>\\n </mrow>\\n <annotation> $40\\\\,\\\\mathrm{K}\\\\lesssim {T}_{\\\\mathrm{r}}\\\\lesssim 10000\\\\,\\\\mathrm{K}$</annotation>\\n </semantics></math>. The values of the fitting parameters suggest that the fine structure effect is more important than the effect of the long range ion-quadrupole and polarization potentials for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>≲</mo>\\n <mn>500</mn>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}\\\\lesssim 500$</annotation>\\n </semantics></math> K. A relationship is derived between the parameters of the Dalgarno model and the exponent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math> of the power law dependence (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ν</mi>\\n <mtext>in</mtext>\\n </msub>\\n <mo>∝</mo>\\n <msubsup>\\n <mi>T</mi>\\n <mi>r</mi>\\n <mi>λ</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\nu }_{\\\\text{in}}\\\\propto {T}_{\\\\mathrm{r}}^{\\\\lambda }$</annotation>\\n </semantics></math>) at high <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mi>r</mi>\\n </msub>\\n </mrow>\\n <annotation> ${T}_{\\\\mathrm{r}}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034494\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034494\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034494","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
推导了Dalgarno模型参数与幂律依赖(ν in∝T r λ)的指数λ $\lambda $之间的关系${\nu }_{\text{in}}\propto {T}_{\mathrm{r}}^{\lambda }$)在高T r ${T}_{\mathrm{r}}$。
New Fit for the O+-O Collision Frequency Including Fine Structure Effects
A new fit is presented for the oxygen ion-neutral collision frequency . The fit explicitly depends on the neutral temperature , which characterizes the thermal distribution of fine structure levels of O(3,1,2), and the reduced temperature , where is the ion temperature. A physically realistic fitting function adapted from the exact solution of a two-state system is constrained to approach plausible analytic models in the limits that is high (Dalgarno's model, ) or is low (Langevin's model, –50 K). The target data for the fit are determined from the cross sections calculated by Hickman et al. (1997, https://doi.org/10.1103/PhysRevA.56.4633) and their extrapolations to lower and higher energies using the Langevin and Dalgarno models. The fit reproduces the target data within 1% for any and for any in the range . The values of the fitting parameters suggest that the fine structure effect is more important than the effect of the long range ion-quadrupole and polarization potentials for K. A relationship is derived between the parameters of the Dalgarno model and the exponent of the power law dependence () at high .