长时间弹动力分析的混合数值框架

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yikun Wang , Lin Qiu , Wenzhen Qu , Fajie Wang , Yan Gu , Qing-Hua Qin
{"title":"长时间弹动力分析的混合数值框架","authors":"Yikun Wang ,&nbsp;Lin Qiu ,&nbsp;Wenzhen Qu ,&nbsp;Fajie Wang ,&nbsp;Yan Gu ,&nbsp;Qing-Hua Qin","doi":"10.1016/j.compstruc.2025.108008","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a hybrid numerical framework for solving two- and three-dimensional elastodynamic problems. The framework employs the Krylov deferred correction technique for temporal discretization, which effectively enables accurate long-term simulations. To efficiently address the resulting boundary value problems, we develop a modified localized radial basis function (LRBF) collocation method, in which a novel radial basis function is constructed to significantly reduce the sensitivity of computational accuracy to the choice of shape parameters. Through systematic validation with four representative numerical examples, the proposed method demonstrates superior computational efficiency and robustness. In comparison with conventional approaches, the hybrid framework exhibits certain advantages in some aspects.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"319 ","pages":"Article 108008"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid numerical framework for long-time elastodynamic analysis\",\"authors\":\"Yikun Wang ,&nbsp;Lin Qiu ,&nbsp;Wenzhen Qu ,&nbsp;Fajie Wang ,&nbsp;Yan Gu ,&nbsp;Qing-Hua Qin\",\"doi\":\"10.1016/j.compstruc.2025.108008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a hybrid numerical framework for solving two- and three-dimensional elastodynamic problems. The framework employs the Krylov deferred correction technique for temporal discretization, which effectively enables accurate long-term simulations. To efficiently address the resulting boundary value problems, we develop a modified localized radial basis function (LRBF) collocation method, in which a novel radial basis function is constructed to significantly reduce the sensitivity of computational accuracy to the choice of shape parameters. Through systematic validation with four representative numerical examples, the proposed method demonstrates superior computational efficiency and robustness. In comparison with conventional approaches, the hybrid framework exhibits certain advantages in some aspects.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"319 \",\"pages\":\"Article 108008\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794925003669\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925003669","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于求解二维和三维弹性动力学问题的混合数值框架。该框架采用Krylov延迟校正技术进行时间离散化,有效地实现了精确的长期模拟。为了有效地解决边界值问题,提出了一种改进的局部径向基函数(LRBF)配置方法,该方法构造了一种新的径向基函数,显著降低了计算精度对形状参数选择的敏感性。通过4个典型数值算例的系统验证,表明该方法具有较高的计算效率和鲁棒性。与传统方法相比,混合框架在某些方面表现出一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid numerical framework for long-time elastodynamic analysis
This study proposes a hybrid numerical framework for solving two- and three-dimensional elastodynamic problems. The framework employs the Krylov deferred correction technique for temporal discretization, which effectively enables accurate long-term simulations. To efficiently address the resulting boundary value problems, we develop a modified localized radial basis function (LRBF) collocation method, in which a novel radial basis function is constructed to significantly reduce the sensitivity of computational accuracy to the choice of shape parameters. Through systematic validation with four representative numerical examples, the proposed method demonstrates superior computational efficiency and robustness. In comparison with conventional approaches, the hybrid framework exhibits certain advantages in some aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信