{"title":"基于分子模糊集的可持续性和可行性决策支持系统的油气周边可持续城市气候干预技术评价","authors":"Abdolvahhab Fetanat , Mohsen Tayebi","doi":"10.1016/j.psep.2025.108031","DOIUrl":null,"url":null,"abstract":"<div><div>As cities universally grapple with exacerbating challenges from environmental extremes such as wildfires, heat waves, air pollution, climate change, and carbon dioxide (CO<sub>2</sub>) emissions, there is an urgent need for a decision support system (DSS) to provide actionable insights for policymakers and plan the mitigation of the adverse impacts of these extremes on communities. In this regard, climate intervention technologies are important and valuable technologies for sustaining cities under environmental extremes. Assessing these technologies for use as an optimal alternative is urgently needed in most of Iran's southern regions due to the proximity of cities in these regions to oil, gas, and petrochemical systems. According to, in order to optimize the use of these technologies for the studied regions, an intelligent DSS based on a systematic model, namely the Delphi-fuzzy molecular ranking (DFMORAN) model is conducted by considering the sustainability and feasibility principles of different climate intervention technologies. For implementing the DEFMORAN model, ten climate intervention technologies consisting of 1) stratospheric aerosol injection (SAI), 2) space-based geo-engineering (SBG), 3) marine cloud brightening (MCB), 4) direct air capture with carbon storage (DACCS), 5) enhanced weathering, 6) biochar, 7) afforestation and reforestation (AR), 8) bioenergy with carbon capture and storage (BECCS), 9) soil carbon sequestration (SCS), 10) marine biomass and blue carbon (MBBC) are considered as decision-making alternatives. Also, an evaluation system containing 17 criteria-based sustainability and feasibility principles (economic, environmental, social, and feasibility aspects) is used. The results of this model reveal that the AR and SCS with the highest rank are proposed as the sustainable and optimal alternatives for mitigating the environmental extremes and conserving the ecosystem of the studied cities in Iran.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"203 ","pages":"Article 108031"},"PeriodicalIF":7.8000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of climate intervention technologies for sustaining cities close to oil and gas operations: A sustainability and feasibility-based decision support system under molecular fuzzy set\",\"authors\":\"Abdolvahhab Fetanat , Mohsen Tayebi\",\"doi\":\"10.1016/j.psep.2025.108031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As cities universally grapple with exacerbating challenges from environmental extremes such as wildfires, heat waves, air pollution, climate change, and carbon dioxide (CO<sub>2</sub>) emissions, there is an urgent need for a decision support system (DSS) to provide actionable insights for policymakers and plan the mitigation of the adverse impacts of these extremes on communities. In this regard, climate intervention technologies are important and valuable technologies for sustaining cities under environmental extremes. Assessing these technologies for use as an optimal alternative is urgently needed in most of Iran's southern regions due to the proximity of cities in these regions to oil, gas, and petrochemical systems. According to, in order to optimize the use of these technologies for the studied regions, an intelligent DSS based on a systematic model, namely the Delphi-fuzzy molecular ranking (DFMORAN) model is conducted by considering the sustainability and feasibility principles of different climate intervention technologies. For implementing the DEFMORAN model, ten climate intervention technologies consisting of 1) stratospheric aerosol injection (SAI), 2) space-based geo-engineering (SBG), 3) marine cloud brightening (MCB), 4) direct air capture with carbon storage (DACCS), 5) enhanced weathering, 6) biochar, 7) afforestation and reforestation (AR), 8) bioenergy with carbon capture and storage (BECCS), 9) soil carbon sequestration (SCS), 10) marine biomass and blue carbon (MBBC) are considered as decision-making alternatives. Also, an evaluation system containing 17 criteria-based sustainability and feasibility principles (economic, environmental, social, and feasibility aspects) is used. The results of this model reveal that the AR and SCS with the highest rank are proposed as the sustainable and optimal alternatives for mitigating the environmental extremes and conserving the ecosystem of the studied cities in Iran.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"203 \",\"pages\":\"Article 108031\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582025012984\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582025012984","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Evaluation of climate intervention technologies for sustaining cities close to oil and gas operations: A sustainability and feasibility-based decision support system under molecular fuzzy set
As cities universally grapple with exacerbating challenges from environmental extremes such as wildfires, heat waves, air pollution, climate change, and carbon dioxide (CO2) emissions, there is an urgent need for a decision support system (DSS) to provide actionable insights for policymakers and plan the mitigation of the adverse impacts of these extremes on communities. In this regard, climate intervention technologies are important and valuable technologies for sustaining cities under environmental extremes. Assessing these technologies for use as an optimal alternative is urgently needed in most of Iran's southern regions due to the proximity of cities in these regions to oil, gas, and petrochemical systems. According to, in order to optimize the use of these technologies for the studied regions, an intelligent DSS based on a systematic model, namely the Delphi-fuzzy molecular ranking (DFMORAN) model is conducted by considering the sustainability and feasibility principles of different climate intervention technologies. For implementing the DEFMORAN model, ten climate intervention technologies consisting of 1) stratospheric aerosol injection (SAI), 2) space-based geo-engineering (SBG), 3) marine cloud brightening (MCB), 4) direct air capture with carbon storage (DACCS), 5) enhanced weathering, 6) biochar, 7) afforestation and reforestation (AR), 8) bioenergy with carbon capture and storage (BECCS), 9) soil carbon sequestration (SCS), 10) marine biomass and blue carbon (MBBC) are considered as decision-making alternatives. Also, an evaluation system containing 17 criteria-based sustainability and feasibility principles (economic, environmental, social, and feasibility aspects) is used. The results of this model reveal that the AR and SCS with the highest rank are proposed as the sustainable and optimal alternatives for mitigating the environmental extremes and conserving the ecosystem of the studied cities in Iran.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.