Tongliang Zhang , Lijing Zheng , Hengtai Wang , Jie Peng , Yanjun Li
{"title":"特征二上Fq3上排列五反常的进一步结果","authors":"Tongliang Zhang , Lijing Zheng , Hengtai Wang , Jie Peng , Yanjun Li","doi":"10.1016/j.ffa.2025.102743","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>. In a recent paper <span><span>[34]</span></span>, Zhang and Zheng investigated several classes of permutation pentanomials of the form <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>+</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mspace></mspace><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span> with a certain linearized polynomial <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. They applied the multivariate method and specific techniques to analyze the number of solutions of certain equations, and proposed an open problem: the permutation property of some pentanomials of this form remains unproven. In this paper, inspired by the idea of <span><span>[12]</span></span>, we further characterize the permutation property of such pentanomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mspace></mspace><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. The techniques presented in this paper will be useful for investigating more new classes of permutation polynomials.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102743"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further results on permutation pentanomials over Fq3 in characteristic two\",\"authors\":\"Tongliang Zhang , Lijing Zheng , Hengtai Wang , Jie Peng , Yanjun Li\",\"doi\":\"10.1016/j.ffa.2025.102743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>. In a recent paper <span><span>[34]</span></span>, Zhang and Zheng investigated several classes of permutation pentanomials of the form <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>+</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mspace></mspace><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span> with a certain linearized polynomial <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. They applied the multivariate method and specific techniques to analyze the number of solutions of certain equations, and proposed an open problem: the permutation property of some pentanomials of this form remains unproven. In this paper, inspired by the idea of <span><span>[12]</span></span>, we further characterize the permutation property of such pentanomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub><mspace></mspace><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. The techniques presented in this paper will be useful for investigating more new classes of permutation polynomials.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102743\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972500173X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972500173X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Further results on permutation pentanomials over Fq3 in characteristic two
Let . In a recent paper [34], Zhang and Zheng investigated several classes of permutation pentanomials of the form over with a certain linearized polynomial . They applied the multivariate method and specific techniques to analyze the number of solutions of certain equations, and proposed an open problem: the permutation property of some pentanomials of this form remains unproven. In this paper, inspired by the idea of [12], we further characterize the permutation property of such pentanomials over . The techniques presented in this paper will be useful for investigating more new classes of permutation polynomials.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.