{"title":"关于无和函数","authors":"Alyssa Ebeling , Xiang-dong Hou , Ashley Rydell , Shujun Zhao","doi":"10.1016/j.ffa.2025.102744","DOIUrl":null,"url":null,"abstract":"<div><div>A function from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> to <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is said to be <em>kth order sum-free</em> if the sum of its values over each <em>k</em>-dimensional <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-affine subspace of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is nonzero. This notion was recently introduced by C. Carlet as, among other things, a generalization of APN functions. At the center of this new topic is a conjecture about the sum-freedom of the multiplicative inverse function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> (with <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> defined to be 0). It is known that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> is 2nd order (equivalently, <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>th order) sum-free if and only if <em>n</em> is odd, and it is conjectured that for <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> is never <em>k</em>th order sum-free. The conjecture has been confirmed for even <em>n</em> but remains open for odd <em>n</em>. In the present paper, we show that the conjecture holds under each of the following conditions: (1) <span><math><mi>n</mi><mo>=</mo><mn>13</mn></math></span>; (2) <span><math><mn>3</mn><mo>|</mo><mi>n</mi></math></span>; (3) <span><math><mn>5</mn><mo>|</mo><mi>n</mi></math></span>; (4) the smallest prime divisor <em>l</em> of <em>n</em> satisfies <span><math><mo>(</mo><mi>l</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>l</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. We also determine the “right” <em>q</em>-ary generalization of the binary multiplicative inverse function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> in the context of sum-freedom. This <em>q</em>-ary generalization not only maintains most results for its binary version, but also exhibits some extraordinary phenomena that are not observed in the binary case.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102744"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sum-free functions\",\"authors\":\"Alyssa Ebeling , Xiang-dong Hou , Ashley Rydell , Shujun Zhao\",\"doi\":\"10.1016/j.ffa.2025.102744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A function from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> to <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is said to be <em>kth order sum-free</em> if the sum of its values over each <em>k</em>-dimensional <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-affine subspace of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is nonzero. This notion was recently introduced by C. Carlet as, among other things, a generalization of APN functions. At the center of this new topic is a conjecture about the sum-freedom of the multiplicative inverse function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> (with <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> defined to be 0). It is known that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> is 2nd order (equivalently, <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>th order) sum-free if and only if <em>n</em> is odd, and it is conjectured that for <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> is never <em>k</em>th order sum-free. The conjecture has been confirmed for even <em>n</em> but remains open for odd <em>n</em>. In the present paper, we show that the conjecture holds under each of the following conditions: (1) <span><math><mi>n</mi><mo>=</mo><mn>13</mn></math></span>; (2) <span><math><mn>3</mn><mo>|</mo><mi>n</mi></math></span>; (3) <span><math><mn>5</mn><mo>|</mo><mi>n</mi></math></span>; (4) the smallest prime divisor <em>l</em> of <em>n</em> satisfies <span><math><mo>(</mo><mi>l</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>l</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. We also determine the “right” <em>q</em>-ary generalization of the binary multiplicative inverse function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> in the context of sum-freedom. This <em>q</em>-ary generalization not only maintains most results for its binary version, but also exhibits some extraordinary phenomena that are not observed in the binary case.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102744\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001741\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001741","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A function from to is said to be kth order sum-free if the sum of its values over each k-dimensional -affine subspace of is nonzero. This notion was recently introduced by C. Carlet as, among other things, a generalization of APN functions. At the center of this new topic is a conjecture about the sum-freedom of the multiplicative inverse function (with defined to be 0). It is known that is 2nd order (equivalently, th order) sum-free if and only if n is odd, and it is conjectured that for , is never kth order sum-free. The conjecture has been confirmed for even n but remains open for odd n. In the present paper, we show that the conjecture holds under each of the following conditions: (1) ; (2) ; (3) ; (4) the smallest prime divisor l of n satisfies . We also determine the “right” q-ary generalization of the binary multiplicative inverse function in the context of sum-freedom. This q-ary generalization not only maintains most results for its binary version, but also exhibits some extraordinary phenomena that are not observed in the binary case.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.