用于高性能锂金属电池的结构和表面改性独立式碳纳米纤维主机

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Noeul Kim , Jae Sol Sim , Jae Hun Choi , Jung-Kul Lee , Yun Chan Kang
{"title":"用于高性能锂金属电池的结构和表面改性独立式碳纳米纤维主机","authors":"Noeul Kim ,&nbsp;Jae Sol Sim ,&nbsp;Jae Hun Choi ,&nbsp;Jung-Kul Lee ,&nbsp;Yun Chan Kang","doi":"10.1016/j.carbon.2025.120940","DOIUrl":null,"url":null,"abstract":"<div><div>The commercialization of Li-metal batteries is limited by uncontrolled Li dendrite growth, causing short circuits and capacity degradation. Carbon nanofibers (CNFs) have been explored as 3D Li-metal hosts to reduce local current density, but their intrinsic lithiophobicity hinders uniform Li deposition. Herein, we report a freestanding 3D CNF scaffold decorated with ZnO and coated with SnO<sub>2</sub> via electrospinning and e-beam evaporation. The embedded ZnO particles serve as lithiophilic nucleation sites, guiding uniform Li plating throughout the structure. Meanwhile, the SnO<sub>2</sub> surface layer undergoes lithiation to form Li–Sn alloy and Li<sub>2</sub>O, which enhance interfacial charge transfer and suppress dendrite formation. Notably, the SnO<sub>2</sub> coating induces a vertical electronic conductivity gradient across the scaffold, mitigating top-surface Li deposition and promoting stable, internal plating. Benefiting from this structural and gradient surface modification, the engineered electrode achieves a Coulombic efficiency of 97 % over 260 cycles at 1.0 mA cm<sup>−2</sup>. At a high Li loading of 5.0 mAh cm<sup>−2</sup>, the symmetric cell maintains a low overpotential (&lt;30 mV) for over 900 h. A full cell coupled with LiFePO<sub>4</sub> delivers excellent cycling stability with 91.2 % capacity retention after 180 cycles at 1.0C. This strategy offers a promising route for safe, high-performance Li-metal batteries.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"247 ","pages":"Article 120940"},"PeriodicalIF":11.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and surface-modified freestanding carbon nanofiber hosts for high-performance lithium-metal batteries\",\"authors\":\"Noeul Kim ,&nbsp;Jae Sol Sim ,&nbsp;Jae Hun Choi ,&nbsp;Jung-Kul Lee ,&nbsp;Yun Chan Kang\",\"doi\":\"10.1016/j.carbon.2025.120940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The commercialization of Li-metal batteries is limited by uncontrolled Li dendrite growth, causing short circuits and capacity degradation. Carbon nanofibers (CNFs) have been explored as 3D Li-metal hosts to reduce local current density, but their intrinsic lithiophobicity hinders uniform Li deposition. Herein, we report a freestanding 3D CNF scaffold decorated with ZnO and coated with SnO<sub>2</sub> via electrospinning and e-beam evaporation. The embedded ZnO particles serve as lithiophilic nucleation sites, guiding uniform Li plating throughout the structure. Meanwhile, the SnO<sub>2</sub> surface layer undergoes lithiation to form Li–Sn alloy and Li<sub>2</sub>O, which enhance interfacial charge transfer and suppress dendrite formation. Notably, the SnO<sub>2</sub> coating induces a vertical electronic conductivity gradient across the scaffold, mitigating top-surface Li deposition and promoting stable, internal plating. Benefiting from this structural and gradient surface modification, the engineered electrode achieves a Coulombic efficiency of 97 % over 260 cycles at 1.0 mA cm<sup>−2</sup>. At a high Li loading of 5.0 mAh cm<sup>−2</sup>, the symmetric cell maintains a low overpotential (&lt;30 mV) for over 900 h. A full cell coupled with LiFePO<sub>4</sub> delivers excellent cycling stability with 91.2 % capacity retention after 180 cycles at 1.0C. This strategy offers a promising route for safe, high-performance Li-metal batteries.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"247 \",\"pages\":\"Article 120940\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000862232500956X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232500956X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池的商业化受到不受控制的锂枝晶生长的限制,导致短路和容量下降。碳纳米纤维(CNFs)作为3D锂金属寄主已被探索以降低局部电流密度,但其固有的疏石性阻碍了均匀的锂沉积。在此,我们报道了一个独立的三维CNF支架,用ZnO装饰,并通过静电纺丝和电子束蒸发涂覆SnO2。嵌入的ZnO颗粒作为亲锂成核位点,引导整个结构均匀镀锂。同时,SnO2表面层发生锂化,形成Li-Sn合金和Li2O,增强了界面电荷传递,抑制了枝晶的形成。值得注意的是,SnO2涂层在支架上形成了垂直的电子导电性梯度,减轻了顶部表面的锂沉积,促进了稳定的内部电镀。得益于这种结构和梯度表面修饰,工程电极在1.0 mA cm−2下,在260次循环中实现了97%的库仑效率。在5.0 mAh cm−2的高锂负载下,对称电池保持低过电位(<30 mV)超过900小时。在1.0C下180次循环后,与LiFePO4耦合的电池具有出色的循环稳定性,容量保持率为91.2%。这一策略为制造安全、高性能的锂金属电池提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural and surface-modified freestanding carbon nanofiber hosts for high-performance lithium-metal batteries

Structural and surface-modified freestanding carbon nanofiber hosts for high-performance lithium-metal batteries
The commercialization of Li-metal batteries is limited by uncontrolled Li dendrite growth, causing short circuits and capacity degradation. Carbon nanofibers (CNFs) have been explored as 3D Li-metal hosts to reduce local current density, but their intrinsic lithiophobicity hinders uniform Li deposition. Herein, we report a freestanding 3D CNF scaffold decorated with ZnO and coated with SnO2 via electrospinning and e-beam evaporation. The embedded ZnO particles serve as lithiophilic nucleation sites, guiding uniform Li plating throughout the structure. Meanwhile, the SnO2 surface layer undergoes lithiation to form Li–Sn alloy and Li2O, which enhance interfacial charge transfer and suppress dendrite formation. Notably, the SnO2 coating induces a vertical electronic conductivity gradient across the scaffold, mitigating top-surface Li deposition and promoting stable, internal plating. Benefiting from this structural and gradient surface modification, the engineered electrode achieves a Coulombic efficiency of 97 % over 260 cycles at 1.0 mA cm−2. At a high Li loading of 5.0 mAh cm−2, the symmetric cell maintains a low overpotential (<30 mV) for over 900 h. A full cell coupled with LiFePO4 delivers excellent cycling stability with 91.2 % capacity retention after 180 cycles at 1.0C. This strategy offers a promising route for safe, high-performance Li-metal batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信