co3o4 - cnt - n掺杂碳体系的合理设计:用DFT桥接原位/非原位研究

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Anna G. Rojek , Rustem Zairov , Renat Nazmutdinov , Ewa Mijowska
{"title":"co3o4 - cnt - n掺杂碳体系的合理设计:用DFT桥接原位/非原位研究","authors":"Anna G. Rojek ,&nbsp;Rustem Zairov ,&nbsp;Renat Nazmutdinov ,&nbsp;Ewa Mijowska","doi":"10.1016/j.carbon.2025.120942","DOIUrl":null,"url":null,"abstract":"<div><div>This paper reveals that the controlled strategy of high-temperature carbonization of ZIF-67 is a facile route to deliver active species boosting oxygen evolution reaction (OER) performance. The optimized sample (treated at 750 °C) is composed of a nitrogen-doped carbon matrix with embedded metallic Co nanoparticles with Co<sub>3</sub>O<sub>4</sub> islets and decorated by carbon nanotubes (CNT). Among them, Co<sub>3</sub>O<sub>4</sub> islets significantly promote oxygen evolution. Their enhanced activity is explained via density-functional theory (DFT) calculations describing the reaction mechanism involving two different active sites of islets. The experimental results demonstrate an overpotential of 288 mV, a Tafel slope of 69 mV/dec, and a potential retention of 97.2 % after a 100h test at 50 mA/cm<sup>2</sup>. Systematic microscopic, in situ &amp; <em>ex-situ</em> spectroscopic (Raman), and theoretical studies allowed us to unveil the intermediates responsible for the promotion of electroactivity. The theoretical model predicts the predominant catalytic activity of terminal O atoms (Ot) at the Co<sub>3</sub>O<sub>4</sub> surface. These results offer a promising \"proof of concept\" for developing more efficient zeolitic imidazole framework (ZIF)-based electrocatalysts.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"246 ","pages":"Article 120942"},"PeriodicalIF":11.6000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of Co3O4–CNT–N-doped carbon system for superior OER: Bridging in situ/ex situ studies with DFT\",\"authors\":\"Anna G. Rojek ,&nbsp;Rustem Zairov ,&nbsp;Renat Nazmutdinov ,&nbsp;Ewa Mijowska\",\"doi\":\"10.1016/j.carbon.2025.120942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper reveals that the controlled strategy of high-temperature carbonization of ZIF-67 is a facile route to deliver active species boosting oxygen evolution reaction (OER) performance. The optimized sample (treated at 750 °C) is composed of a nitrogen-doped carbon matrix with embedded metallic Co nanoparticles with Co<sub>3</sub>O<sub>4</sub> islets and decorated by carbon nanotubes (CNT). Among them, Co<sub>3</sub>O<sub>4</sub> islets significantly promote oxygen evolution. Their enhanced activity is explained via density-functional theory (DFT) calculations describing the reaction mechanism involving two different active sites of islets. The experimental results demonstrate an overpotential of 288 mV, a Tafel slope of 69 mV/dec, and a potential retention of 97.2 % after a 100h test at 50 mA/cm<sup>2</sup>. Systematic microscopic, in situ &amp; <em>ex-situ</em> spectroscopic (Raman), and theoretical studies allowed us to unveil the intermediates responsible for the promotion of electroactivity. The theoretical model predicts the predominant catalytic activity of terminal O atoms (Ot) at the Co<sub>3</sub>O<sub>4</sub> surface. These results offer a promising \\\"proof of concept\\\" for developing more efficient zeolitic imidazole framework (ZIF)-based electrocatalysts.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"246 \",\"pages\":\"Article 120942\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325009583\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325009583","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文揭示了ZIF-67的高温碳化控制策略是实现活性物质促进氧析反应(OER)性能的简便途径。优化后的样品(750°C处理)由氮掺杂碳基体组成,其中金属Co纳米颗粒嵌入Co3O4胰岛,并由碳纳米管(CNT)装饰。其中,Co3O4胰岛显著促进氧的析出。它们增强的活性是通过密度泛函理论(DFT)计算来解释的,该理论描述了涉及胰岛两个不同活性位点的反应机制。实验结果表明,在50 mA/cm2下测试100小时后,过电位为288 mV, Tafel斜率为69 mV/dec,电位保留率为97.2%。系统的微观,原位和非原位光谱(拉曼)和理论研究使我们揭示了负责促进电活动的中间体。理论模型预测了Co3O4表面末端O原子(Ot)的主要催化活性。这些结果为开发更高效的沸石基咪唑框架(ZIF)电催化剂提供了一个有希望的“概念证明”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational design of Co3O4–CNT–N-doped carbon system for superior OER: Bridging in situ/ex situ studies with DFT

Rational design of Co3O4–CNT–N-doped carbon system for superior OER: Bridging in situ/ex situ studies with DFT
This paper reveals that the controlled strategy of high-temperature carbonization of ZIF-67 is a facile route to deliver active species boosting oxygen evolution reaction (OER) performance. The optimized sample (treated at 750 °C) is composed of a nitrogen-doped carbon matrix with embedded metallic Co nanoparticles with Co3O4 islets and decorated by carbon nanotubes (CNT). Among them, Co3O4 islets significantly promote oxygen evolution. Their enhanced activity is explained via density-functional theory (DFT) calculations describing the reaction mechanism involving two different active sites of islets. The experimental results demonstrate an overpotential of 288 mV, a Tafel slope of 69 mV/dec, and a potential retention of 97.2 % after a 100h test at 50 mA/cm2. Systematic microscopic, in situ & ex-situ spectroscopic (Raman), and theoretical studies allowed us to unveil the intermediates responsible for the promotion of electroactivity. The theoretical model predicts the predominant catalytic activity of terminal O atoms (Ot) at the Co3O4 surface. These results offer a promising "proof of concept" for developing more efficient zeolitic imidazole framework (ZIF)-based electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信