Tiantian Xiao , Yi Liao , Xuming Liu , Changzhao Pan
{"title":"一种新型低温驱动多级克努森泵性能及气体流动特性的数值研究","authors":"Tiantian Xiao , Yi Liao , Xuming Liu , Changzhao Pan","doi":"10.1016/j.cryogenics.2025.104215","DOIUrl":null,"url":null,"abstract":"<div><div>The Knudsen pump, which operates based on the thermal transpiration effect and contains no moving parts, offers a promising solution for microfluidic transport. Its ability to function at low temperatures is particularly advantageous for applications such as hydrogen transportation, which help mitigate leakage risks, and space cryogenic systems, which require high reliability and compact design. This paper develops a numerical model of the low-temperature-driven Knudsen pump (LT-KP) based on the Navier-Stokes equations, incorporating velocity slip and temperature jump boundary conditions. The model simulates and evaluates the pressurization performance and the internal gas flow characteristics of the Knudsen pump over a temperature range extending from liquid nitrogen to room temperature. The simulation results indicate that a single-stage LT-KP can achieve a compression ratio of 1.02 under a temperature gradient of 223 K and an initial pressure of 1 atm. The study further investigates the impact of structural and operational parameters, including the number of stages, temperature gradients, gas rarefaction degree, microchannel dimensions, and gas types. More importantly, a design scheme for a closed-cycle dilution refrigerator incorporating LT-KP is proposed. The simulation results demonstrate that the 10-stage LT-KP, driven by the cascaded temperature gradients of 4 K-40 K and 40 K-300 K, can achieve pressurization from 5 mbar to 200 mbar. This research addresses the knowledge gap regarding Knudsen pump operation in cryogenic environments and provides valuable guidance for its application in refrigeration systems.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"152 ","pages":"Article 104215"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the performance and gas flow characteristics of a novel low-temperature-driven multistage Knudsen pump\",\"authors\":\"Tiantian Xiao , Yi Liao , Xuming Liu , Changzhao Pan\",\"doi\":\"10.1016/j.cryogenics.2025.104215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Knudsen pump, which operates based on the thermal transpiration effect and contains no moving parts, offers a promising solution for microfluidic transport. Its ability to function at low temperatures is particularly advantageous for applications such as hydrogen transportation, which help mitigate leakage risks, and space cryogenic systems, which require high reliability and compact design. This paper develops a numerical model of the low-temperature-driven Knudsen pump (LT-KP) based on the Navier-Stokes equations, incorporating velocity slip and temperature jump boundary conditions. The model simulates and evaluates the pressurization performance and the internal gas flow characteristics of the Knudsen pump over a temperature range extending from liquid nitrogen to room temperature. The simulation results indicate that a single-stage LT-KP can achieve a compression ratio of 1.02 under a temperature gradient of 223 K and an initial pressure of 1 atm. The study further investigates the impact of structural and operational parameters, including the number of stages, temperature gradients, gas rarefaction degree, microchannel dimensions, and gas types. More importantly, a design scheme for a closed-cycle dilution refrigerator incorporating LT-KP is proposed. The simulation results demonstrate that the 10-stage LT-KP, driven by the cascaded temperature gradients of 4 K-40 K and 40 K-300 K, can achieve pressurization from 5 mbar to 200 mbar. This research addresses the knowledge gap regarding Knudsen pump operation in cryogenic environments and provides valuable guidance for its application in refrigeration systems.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"152 \",\"pages\":\"Article 104215\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227525001948\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525001948","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Numerical investigation of the performance and gas flow characteristics of a novel low-temperature-driven multistage Knudsen pump
The Knudsen pump, which operates based on the thermal transpiration effect and contains no moving parts, offers a promising solution for microfluidic transport. Its ability to function at low temperatures is particularly advantageous for applications such as hydrogen transportation, which help mitigate leakage risks, and space cryogenic systems, which require high reliability and compact design. This paper develops a numerical model of the low-temperature-driven Knudsen pump (LT-KP) based on the Navier-Stokes equations, incorporating velocity slip and temperature jump boundary conditions. The model simulates and evaluates the pressurization performance and the internal gas flow characteristics of the Knudsen pump over a temperature range extending from liquid nitrogen to room temperature. The simulation results indicate that a single-stage LT-KP can achieve a compression ratio of 1.02 under a temperature gradient of 223 K and an initial pressure of 1 atm. The study further investigates the impact of structural and operational parameters, including the number of stages, temperature gradients, gas rarefaction degree, microchannel dimensions, and gas types. More importantly, a design scheme for a closed-cycle dilution refrigerator incorporating LT-KP is proposed. The simulation results demonstrate that the 10-stage LT-KP, driven by the cascaded temperature gradients of 4 K-40 K and 40 K-300 K, can achieve pressurization from 5 mbar to 200 mbar. This research addresses the knowledge gap regarding Knudsen pump operation in cryogenic environments and provides valuable guidance for its application in refrigeration systems.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics