Haojian Su , Zekun Wang , Liancheng Xie , Mingyue Jiang
{"title":"极低温设备健康监测研究","authors":"Haojian Su , Zekun Wang , Liancheng Xie , Mingyue Jiang","doi":"10.1016/j.cryogenics.2025.104218","DOIUrl":null,"url":null,"abstract":"<div><div>Full-lifecycle health monitoring of extreme low-temperature equipment heavily depends on the stability of the cryogenic mechanical behavior of core structural materials. Notably, Fe-Mn-C series high-manganese steels stand as key candidate material for extreme low-temperature scenarios at 4.2 K. To address three critical challenges for this material system—i.e., the lack of 4.2 K constitutive models, multi-scale modeling bottlenecks, and insufficient local monitoring—that directly limit its health monitoring, this study targets Fe-22 wt% Mn-1 wt% C-0.3 wt% Cu high-manganese austenitic steel to systematically investigate its 4.2 K constitutive behavior and microscale deformation mechanisms. The results are as follows: (1) At 4.2 K, the material exhibits a serrated stress–strain response in the plastic stage, characterized by “variable period, amplitude, and equilibrium position”; this behavior is dominated by the synergy of low-frequency (<60 Hz) dynamic strain aging (DSA) and mechanical twinning. (2) 4.2 K-adapted cryogenic digital image correlation (DIC) technology reveals that the material exhibits differentiated strain distributions across temperature ranges, providing direct visual evidence for risk zone localization in health monitoring. (3) Microscopic characterization confirms that the hierarchical twin structure at 4.2 K is the core mechanism sustaining the material’s strength-plasticity balance; based on this, a correlation model linking “macroscopic strain distribution and microscopic twin evolution” is established. Leveraging these results, this study establishes a foundational 4.2 K constitutive model incorporating DSA-twinning coupling terms. This model enables quantitative support for “stress-strain-failure risk” analysis in extreme low-temperature equipment health monitoring, facilitating the advancement of monitoring systems from “macroscopic evaluation” to “precision early warning”.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"152 ","pages":"Article 104218"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on health monitoring of extreme low-temperature equipment\",\"authors\":\"Haojian Su , Zekun Wang , Liancheng Xie , Mingyue Jiang\",\"doi\":\"10.1016/j.cryogenics.2025.104218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Full-lifecycle health monitoring of extreme low-temperature equipment heavily depends on the stability of the cryogenic mechanical behavior of core structural materials. Notably, Fe-Mn-C series high-manganese steels stand as key candidate material for extreme low-temperature scenarios at 4.2 K. To address three critical challenges for this material system—i.e., the lack of 4.2 K constitutive models, multi-scale modeling bottlenecks, and insufficient local monitoring—that directly limit its health monitoring, this study targets Fe-22 wt% Mn-1 wt% C-0.3 wt% Cu high-manganese austenitic steel to systematically investigate its 4.2 K constitutive behavior and microscale deformation mechanisms. The results are as follows: (1) At 4.2 K, the material exhibits a serrated stress–strain response in the plastic stage, characterized by “variable period, amplitude, and equilibrium position”; this behavior is dominated by the synergy of low-frequency (<60 Hz) dynamic strain aging (DSA) and mechanical twinning. (2) 4.2 K-adapted cryogenic digital image correlation (DIC) technology reveals that the material exhibits differentiated strain distributions across temperature ranges, providing direct visual evidence for risk zone localization in health monitoring. (3) Microscopic characterization confirms that the hierarchical twin structure at 4.2 K is the core mechanism sustaining the material’s strength-plasticity balance; based on this, a correlation model linking “macroscopic strain distribution and microscopic twin evolution” is established. Leveraging these results, this study establishes a foundational 4.2 K constitutive model incorporating DSA-twinning coupling terms. This model enables quantitative support for “stress-strain-failure risk” analysis in extreme low-temperature equipment health monitoring, facilitating the advancement of monitoring systems from “macroscopic evaluation” to “precision early warning”.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"152 \",\"pages\":\"Article 104218\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227525001973\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525001973","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Research on health monitoring of extreme low-temperature equipment
Full-lifecycle health monitoring of extreme low-temperature equipment heavily depends on the stability of the cryogenic mechanical behavior of core structural materials. Notably, Fe-Mn-C series high-manganese steels stand as key candidate material for extreme low-temperature scenarios at 4.2 K. To address three critical challenges for this material system—i.e., the lack of 4.2 K constitutive models, multi-scale modeling bottlenecks, and insufficient local monitoring—that directly limit its health monitoring, this study targets Fe-22 wt% Mn-1 wt% C-0.3 wt% Cu high-manganese austenitic steel to systematically investigate its 4.2 K constitutive behavior and microscale deformation mechanisms. The results are as follows: (1) At 4.2 K, the material exhibits a serrated stress–strain response in the plastic stage, characterized by “variable period, amplitude, and equilibrium position”; this behavior is dominated by the synergy of low-frequency (<60 Hz) dynamic strain aging (DSA) and mechanical twinning. (2) 4.2 K-adapted cryogenic digital image correlation (DIC) technology reveals that the material exhibits differentiated strain distributions across temperature ranges, providing direct visual evidence for risk zone localization in health monitoring. (3) Microscopic characterization confirms that the hierarchical twin structure at 4.2 K is the core mechanism sustaining the material’s strength-plasticity balance; based on this, a correlation model linking “macroscopic strain distribution and microscopic twin evolution” is established. Leveraging these results, this study establishes a foundational 4.2 K constitutive model incorporating DSA-twinning coupling terms. This model enables quantitative support for “stress-strain-failure risk” analysis in extreme low-temperature equipment health monitoring, facilitating the advancement of monitoring systems from “macroscopic evaluation” to “precision early warning”.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics