反键态驱动边共享金属硫族化合物的非调和性和低导热性。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Harpriya Minhas,Rahul Kumar Sharma,Biswarup Pathak
{"title":"反键态驱动边共享金属硫族化合物的非调和性和低导热性。","authors":"Harpriya Minhas,Rahul Kumar Sharma,Biswarup Pathak","doi":"10.1021/acsami.5c17211","DOIUrl":null,"url":null,"abstract":"Stereochemically active lone pairs (SCALPs) and orbital hybridization in edge-sharing polyhedra play a crucial role in suppressing lattice thermal conductivity (κL) in thermoelectric materials. Strong mixing between pnictogen s- and chalcogen p-orbitals generates active lone pairs, which enhance lattice anharmonicity and lead to ultralow κL. In this study, we leverage machine learning interatomic potential to systematically probe bonding-driven mechanisms and their influence on thermal transport in noncentrosymmetric pnictogen chalcogens. We show that the combined effects of SCALPs, Pn-Pn bonding, and edge-sharing polyhedra enable the formation of antibonding states near the valence band maxima, intensifying phonon scattering. To quantify the underlying anharmonicity, we introduce a set of bonding descriptors─lone pair angle, lone pair distance, ionicity, and hybridization─that capture the influence of local structural motifs and antibonding features near the valence band edge. This bonding-centric framework not only elucidates the origins of ultralow κL but also offers a rational design strategy for accelerating the discovery of high-performance thermoelectric materials.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"150 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibonding States Drive Anharmonicity and Low Thermal Conductivity in Edge-Sharing Metal Chalcogenides.\",\"authors\":\"Harpriya Minhas,Rahul Kumar Sharma,Biswarup Pathak\",\"doi\":\"10.1021/acsami.5c17211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereochemically active lone pairs (SCALPs) and orbital hybridization in edge-sharing polyhedra play a crucial role in suppressing lattice thermal conductivity (κL) in thermoelectric materials. Strong mixing between pnictogen s- and chalcogen p-orbitals generates active lone pairs, which enhance lattice anharmonicity and lead to ultralow κL. In this study, we leverage machine learning interatomic potential to systematically probe bonding-driven mechanisms and their influence on thermal transport in noncentrosymmetric pnictogen chalcogens. We show that the combined effects of SCALPs, Pn-Pn bonding, and edge-sharing polyhedra enable the formation of antibonding states near the valence band maxima, intensifying phonon scattering. To quantify the underlying anharmonicity, we introduce a set of bonding descriptors─lone pair angle, lone pair distance, ionicity, and hybridization─that capture the influence of local structural motifs and antibonding features near the valence band edge. This bonding-centric framework not only elucidates the origins of ultralow κL but also offers a rational design strategy for accelerating the discovery of high-performance thermoelectric materials.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c17211\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c17211","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

边共享多面体中的立体化学活性孤对(SCALPs)和轨道杂化在抑制热电材料晶格热导率(κL)中起着至关重要的作用。烟原s-轨道和硫原p-轨道的强混合会产生活性孤对,从而增强了晶格的非调和性,导致了超低κL。在这项研究中,我们利用机器学习原子间势来系统地探索键驱动机制及其对非中心对称pnicgen - chgens中的热输运的影响。我们发现,SCALPs、Pn-Pn键和边共享多面体的联合作用使得在价带最大值附近形成反键态,加剧声子散射。为了量化潜在的非调和性,我们引入了一组键描述符──孤对角、孤对距离、离子性和杂化──来捕捉价带边缘附近的局部结构基序和反键特征的影响。这种以键合为中心的框架不仅阐明了超低κL的起源,而且为加速高性能热电材料的发现提供了合理的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antibonding States Drive Anharmonicity and Low Thermal Conductivity in Edge-Sharing Metal Chalcogenides.
Stereochemically active lone pairs (SCALPs) and orbital hybridization in edge-sharing polyhedra play a crucial role in suppressing lattice thermal conductivity (κL) in thermoelectric materials. Strong mixing between pnictogen s- and chalcogen p-orbitals generates active lone pairs, which enhance lattice anharmonicity and lead to ultralow κL. In this study, we leverage machine learning interatomic potential to systematically probe bonding-driven mechanisms and their influence on thermal transport in noncentrosymmetric pnictogen chalcogens. We show that the combined effects of SCALPs, Pn-Pn bonding, and edge-sharing polyhedra enable the formation of antibonding states near the valence band maxima, intensifying phonon scattering. To quantify the underlying anharmonicity, we introduce a set of bonding descriptors─lone pair angle, lone pair distance, ionicity, and hybridization─that capture the influence of local structural motifs and antibonding features near the valence band edge. This bonding-centric framework not only elucidates the origins of ultralow κL but also offers a rational design strategy for accelerating the discovery of high-performance thermoelectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信