Junyu Xiang, Yuanli Ni, Jiajun Yu, Hui Sun, Zhiyun Gu, Ziyong Li, Tongwang Yang, Juan Feng, Li Su, Limei Liu, Jiatao Li, Jesus Prieto, Matías A Ávila, Juanjuan Shan, Na Zhuang, Cheng Qian
{"title":"表达mef2d的癌症前体重编程组织内巨噬细胞以支持肝脏肿瘤发生。","authors":"Junyu Xiang, Yuanli Ni, Jiajun Yu, Hui Sun, Zhiyun Gu, Ziyong Li, Tongwang Yang, Juan Feng, Li Su, Limei Liu, Jiatao Li, Jesus Prieto, Matías A Ávila, Juanjuan Shan, Na Zhuang, Cheng Qian","doi":"10.1038/s43018-025-01059-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cancers often originate from precursor cells within an inflamed microenvironment; however, the mechanisms by which these precursors manipulate the niche to promote tumorigenesis remain unclear. By combining single-cell and spatial transcriptomic analyses of precancerous lesions in hepatocellular carcinoma, here we show that elevated myocyte enhancer factor 2D (MEF2D)-expressing cancer precursors reprogram liver-resident macrophages, Kupffer cells (KCs), to create a growth-supportive environment. MEF2D levels induce an oncogenic and secretory phenotype in these precursors by epigenetic reprogramming, which is crucial for tumor initiation in murine models and human samples. This results in a KC-rich niche through paracrine activation of neuropilin 1 (NRP1) signaling on stem-like KC subtype-2 (KC2), driving its differentiation into KC subtype-1 (KC1)-like cells. Pro-inflammatory KC1s release cytokines, particularly IL-6, to enhance an MEF2D-mediated tumor-promoting program in nearby cancer precursors. Targeting NRP1 signaling disrupts the KC2-to-KC1-like differentiation and reduces niche inflammation, thereby inhibiting liver tumorigenesis in male mice. Thus, preventing aberrant KC subtype conversion in the precancerous microenvironment is a viable strategy for early cancer prevention.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":28.5000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEF2D-expressing cancer precursors reprogram tissue-resident macrophages to support liver tumorigenesis.\",\"authors\":\"Junyu Xiang, Yuanli Ni, Jiajun Yu, Hui Sun, Zhiyun Gu, Ziyong Li, Tongwang Yang, Juan Feng, Li Su, Limei Liu, Jiatao Li, Jesus Prieto, Matías A Ávila, Juanjuan Shan, Na Zhuang, Cheng Qian\",\"doi\":\"10.1038/s43018-025-01059-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancers often originate from precursor cells within an inflamed microenvironment; however, the mechanisms by which these precursors manipulate the niche to promote tumorigenesis remain unclear. By combining single-cell and spatial transcriptomic analyses of precancerous lesions in hepatocellular carcinoma, here we show that elevated myocyte enhancer factor 2D (MEF2D)-expressing cancer precursors reprogram liver-resident macrophages, Kupffer cells (KCs), to create a growth-supportive environment. MEF2D levels induce an oncogenic and secretory phenotype in these precursors by epigenetic reprogramming, which is crucial for tumor initiation in murine models and human samples. This results in a KC-rich niche through paracrine activation of neuropilin 1 (NRP1) signaling on stem-like KC subtype-2 (KC2), driving its differentiation into KC subtype-1 (KC1)-like cells. Pro-inflammatory KC1s release cytokines, particularly IL-6, to enhance an MEF2D-mediated tumor-promoting program in nearby cancer precursors. Targeting NRP1 signaling disrupts the KC2-to-KC1-like differentiation and reduces niche inflammation, thereby inhibiting liver tumorigenesis in male mice. Thus, preventing aberrant KC subtype conversion in the precancerous microenvironment is a viable strategy for early cancer prevention.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":28.5000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-025-01059-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-01059-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
MEF2D-expressing cancer precursors reprogram tissue-resident macrophages to support liver tumorigenesis.
Cancers often originate from precursor cells within an inflamed microenvironment; however, the mechanisms by which these precursors manipulate the niche to promote tumorigenesis remain unclear. By combining single-cell and spatial transcriptomic analyses of precancerous lesions in hepatocellular carcinoma, here we show that elevated myocyte enhancer factor 2D (MEF2D)-expressing cancer precursors reprogram liver-resident macrophages, Kupffer cells (KCs), to create a growth-supportive environment. MEF2D levels induce an oncogenic and secretory phenotype in these precursors by epigenetic reprogramming, which is crucial for tumor initiation in murine models and human samples. This results in a KC-rich niche through paracrine activation of neuropilin 1 (NRP1) signaling on stem-like KC subtype-2 (KC2), driving its differentiation into KC subtype-1 (KC1)-like cells. Pro-inflammatory KC1s release cytokines, particularly IL-6, to enhance an MEF2D-mediated tumor-promoting program in nearby cancer precursors. Targeting NRP1 signaling disrupts the KC2-to-KC1-like differentiation and reduces niche inflammation, thereby inhibiting liver tumorigenesis in male mice. Thus, preventing aberrant KC subtype conversion in the precancerous microenvironment is a viable strategy for early cancer prevention.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.