{"title":"基于深度强化学习的时空变压器结构端到端机器人智能避障方法。","authors":"Yuwen Zhou, Weizhong Zhang","doi":"10.3389/fnbot.2025.1646336","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the obstacle avoidance performance and autonomous decision-making capabilities of robots in complex dynamic environments, this paper proposes an end-to-end intelligent obstacle avoidance method that integrates deep reinforcement learning, spatiotemporal attention mechanisms, and a Transformer-based architecture. Current mainstream robot obstacle avoidance methods often rely on system architectures with separated perception and decision-making modules, which suffer from issues such as fragmented feature transmission, insufficient environmental modeling, and weak policy generalization. To address these problems, this paper adopts Deep Q-Network (DQN) as the core of reinforcement learning, guiding the robot to autonomously learn optimal obstacle avoidance strategies through interaction with the environment, effectively handling continuous decision-making problems in dynamic and uncertain scenarios. To overcome the limitations of traditional perception mechanisms in modeling the temporal evolution of obstacles, a spatiotemporal attention mechanism is introduced, jointly modeling spatial positional relationships and historical motion trajectories to enhance the model's perception of critical obstacle areas and potential collision risks. Furthermore, an end-to-end Transformer-based perception-decision architecture is designed, utilizing multi-head self-attention to perform high-dimensional feature modeling on multi-modal input information (such as LiDAR and depth images), and generating action policies through a decoding module. This completely eliminates the need for manual feature engineering and intermediate state modeling, constructing an integrated learning process of perception and decision-making. Experiments conducted in several typical obstacle avoidance simulation environments demonstrate that the proposed method outperforms existing mainstream deep reinforcement learning approaches in terms of obstacle avoidance success rate, path optimization, and policy convergence speed. It exhibits good stability and generalization capabilities, showing broad application prospects for deployment in real-world complex environments.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1646336"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540343/pdf/","citationCount":"0","resultStr":"{\"title\":\"End-to-end robot intelligent obstacle avoidance method based on deep reinforcement learning with spatiotemporal transformer architecture.\",\"authors\":\"Yuwen Zhou, Weizhong Zhang\",\"doi\":\"10.3389/fnbot.2025.1646336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To enhance the obstacle avoidance performance and autonomous decision-making capabilities of robots in complex dynamic environments, this paper proposes an end-to-end intelligent obstacle avoidance method that integrates deep reinforcement learning, spatiotemporal attention mechanisms, and a Transformer-based architecture. Current mainstream robot obstacle avoidance methods often rely on system architectures with separated perception and decision-making modules, which suffer from issues such as fragmented feature transmission, insufficient environmental modeling, and weak policy generalization. To address these problems, this paper adopts Deep Q-Network (DQN) as the core of reinforcement learning, guiding the robot to autonomously learn optimal obstacle avoidance strategies through interaction with the environment, effectively handling continuous decision-making problems in dynamic and uncertain scenarios. To overcome the limitations of traditional perception mechanisms in modeling the temporal evolution of obstacles, a spatiotemporal attention mechanism is introduced, jointly modeling spatial positional relationships and historical motion trajectories to enhance the model's perception of critical obstacle areas and potential collision risks. Furthermore, an end-to-end Transformer-based perception-decision architecture is designed, utilizing multi-head self-attention to perform high-dimensional feature modeling on multi-modal input information (such as LiDAR and depth images), and generating action policies through a decoding module. This completely eliminates the need for manual feature engineering and intermediate state modeling, constructing an integrated learning process of perception and decision-making. Experiments conducted in several typical obstacle avoidance simulation environments demonstrate that the proposed method outperforms existing mainstream deep reinforcement learning approaches in terms of obstacle avoidance success rate, path optimization, and policy convergence speed. It exhibits good stability and generalization capabilities, showing broad application prospects for deployment in real-world complex environments.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"19 \",\"pages\":\"1646336\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540343/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2025.1646336\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1646336","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
End-to-end robot intelligent obstacle avoidance method based on deep reinforcement learning with spatiotemporal transformer architecture.
To enhance the obstacle avoidance performance and autonomous decision-making capabilities of robots in complex dynamic environments, this paper proposes an end-to-end intelligent obstacle avoidance method that integrates deep reinforcement learning, spatiotemporal attention mechanisms, and a Transformer-based architecture. Current mainstream robot obstacle avoidance methods often rely on system architectures with separated perception and decision-making modules, which suffer from issues such as fragmented feature transmission, insufficient environmental modeling, and weak policy generalization. To address these problems, this paper adopts Deep Q-Network (DQN) as the core of reinforcement learning, guiding the robot to autonomously learn optimal obstacle avoidance strategies through interaction with the environment, effectively handling continuous decision-making problems in dynamic and uncertain scenarios. To overcome the limitations of traditional perception mechanisms in modeling the temporal evolution of obstacles, a spatiotemporal attention mechanism is introduced, jointly modeling spatial positional relationships and historical motion trajectories to enhance the model's perception of critical obstacle areas and potential collision risks. Furthermore, an end-to-end Transformer-based perception-decision architecture is designed, utilizing multi-head self-attention to perform high-dimensional feature modeling on multi-modal input information (such as LiDAR and depth images), and generating action policies through a decoding module. This completely eliminates the need for manual feature engineering and intermediate state modeling, constructing an integrated learning process of perception and decision-making. Experiments conducted in several typical obstacle avoidance simulation environments demonstrate that the proposed method outperforms existing mainstream deep reinforcement learning approaches in terms of obstacle avoidance success rate, path optimization, and policy convergence speed. It exhibits good stability and generalization capabilities, showing broad application prospects for deployment in real-world complex environments.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.