Fangning Ren, Pinyuan Li, Xu Chen, Lechen Dong, Fang Liu
{"title":"水溶液UV/Vis吸收能量预测中距离分离混合泛函最优调谐方案的数据驱动推荐。","authors":"Fangning Ren, Pinyuan Li, Xu Chen, Lechen Dong, Fang Liu","doi":"10.1021/acs.jctc.5c01044","DOIUrl":null,"url":null,"abstract":"<p><p>Time-dependent density functional theory (TDDFT) combined with range-separated hybrid (RSH) functionals and a tuned range-separation parameter γ offers a computationally economical approach for high-throughput excited-state property predictions. The γ-tuning procedure in the gas phase is well established. However, no agreement on the best γ-tuning procedure has been made when considering the solvent effect with implicit solvent models like the polarizable continuum model (PCM). To answer that question, this study created a diverse dataset with 937 molecules with experimental solution-phase UV/vis absorption spectra. Three γ-tuning methods, the gas-phase γ-tuning (GPγT), the partial vertical γ-tuning (PVγT), and the strict vertical γ-tuning (SVγT), were evaluated for the ωPBEh functional over the entire dataset. Additional benchmarks are done for the optimally tuned screened range-separated hybrid combined with the PCM approach (SRSH-PCM) and the solvation-mediated tuning procedure (sol-med-OT). Our findings revealed that the optimal γ-values obtained by the PVγT and the SVγT are significantly smaller than the GPγT. This trend holds consistently across all molecules in our dataset, and we explained the origin of this phenomenon. TDDFT calculations with PVγT- and SVγT-tuned γ-values and default global Fock exchange fraction achieve superior performance compared to those using GPγT-tuned or default γ and slightly outperform SRSH-PCM and sol-med-OT with similar or lesser computational cost. Furthermore, we found that the smaller γ-values from SVγT captured the expected 1/(ε<i>R</i>) asymptotic behavior in the solution phase, resulting in accurate prediction of solution-phase CT excitations, consistent with the screened asymptote behavior encoded in SRSH-PCM. These results show that SVγT is the best scheme for high-throughput UV/vis absorption spectrum calculations using the ωPBEh functional from a data-driven perspective.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Recommendation of Optimal Tuning Scheme for Range-Separated Hybrid Functionals in Solution-Phase UV/Vis Absorption Energy Prediction.\",\"authors\":\"Fangning Ren, Pinyuan Li, Xu Chen, Lechen Dong, Fang Liu\",\"doi\":\"10.1021/acs.jctc.5c01044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-dependent density functional theory (TDDFT) combined with range-separated hybrid (RSH) functionals and a tuned range-separation parameter γ offers a computationally economical approach for high-throughput excited-state property predictions. The γ-tuning procedure in the gas phase is well established. However, no agreement on the best γ-tuning procedure has been made when considering the solvent effect with implicit solvent models like the polarizable continuum model (PCM). To answer that question, this study created a diverse dataset with 937 molecules with experimental solution-phase UV/vis absorption spectra. Three γ-tuning methods, the gas-phase γ-tuning (GPγT), the partial vertical γ-tuning (PVγT), and the strict vertical γ-tuning (SVγT), were evaluated for the ωPBEh functional over the entire dataset. Additional benchmarks are done for the optimally tuned screened range-separated hybrid combined with the PCM approach (SRSH-PCM) and the solvation-mediated tuning procedure (sol-med-OT). Our findings revealed that the optimal γ-values obtained by the PVγT and the SVγT are significantly smaller than the GPγT. This trend holds consistently across all molecules in our dataset, and we explained the origin of this phenomenon. TDDFT calculations with PVγT- and SVγT-tuned γ-values and default global Fock exchange fraction achieve superior performance compared to those using GPγT-tuned or default γ and slightly outperform SRSH-PCM and sol-med-OT with similar or lesser computational cost. Furthermore, we found that the smaller γ-values from SVγT captured the expected 1/(ε<i>R</i>) asymptotic behavior in the solution phase, resulting in accurate prediction of solution-phase CT excitations, consistent with the screened asymptote behavior encoded in SRSH-PCM. These results show that SVγT is the best scheme for high-throughput UV/vis absorption spectrum calculations using the ωPBEh functional from a data-driven perspective.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c01044\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c01044","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Data-Driven Recommendation of Optimal Tuning Scheme for Range-Separated Hybrid Functionals in Solution-Phase UV/Vis Absorption Energy Prediction.
Time-dependent density functional theory (TDDFT) combined with range-separated hybrid (RSH) functionals and a tuned range-separation parameter γ offers a computationally economical approach for high-throughput excited-state property predictions. The γ-tuning procedure in the gas phase is well established. However, no agreement on the best γ-tuning procedure has been made when considering the solvent effect with implicit solvent models like the polarizable continuum model (PCM). To answer that question, this study created a diverse dataset with 937 molecules with experimental solution-phase UV/vis absorption spectra. Three γ-tuning methods, the gas-phase γ-tuning (GPγT), the partial vertical γ-tuning (PVγT), and the strict vertical γ-tuning (SVγT), were evaluated for the ωPBEh functional over the entire dataset. Additional benchmarks are done for the optimally tuned screened range-separated hybrid combined with the PCM approach (SRSH-PCM) and the solvation-mediated tuning procedure (sol-med-OT). Our findings revealed that the optimal γ-values obtained by the PVγT and the SVγT are significantly smaller than the GPγT. This trend holds consistently across all molecules in our dataset, and we explained the origin of this phenomenon. TDDFT calculations with PVγT- and SVγT-tuned γ-values and default global Fock exchange fraction achieve superior performance compared to those using GPγT-tuned or default γ and slightly outperform SRSH-PCM and sol-med-OT with similar or lesser computational cost. Furthermore, we found that the smaller γ-values from SVγT captured the expected 1/(εR) asymptotic behavior in the solution phase, resulting in accurate prediction of solution-phase CT excitations, consistent with the screened asymptote behavior encoded in SRSH-PCM. These results show that SVγT is the best scheme for high-throughput UV/vis absorption spectrum calculations using the ωPBEh functional from a data-driven perspective.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.