Ellie Martin, Sean P Doidge, Eiman Aleem, Suela Kellici, Steven Dunn, Claire Atkinson, Philip D Howes
{"title":"新型生物偶联材料:合成、表征及医学应用。","authors":"Ellie Martin, Sean P Doidge, Eiman Aleem, Suela Kellici, Steven Dunn, Claire Atkinson, Philip D Howes","doi":"10.1002/adhm.202500303","DOIUrl":null,"url":null,"abstract":"<p><p>Bioconjugation is a pillar of modern medicine, enabling the likes of targeted therapeutics and sensitive diagnostics by exploiting synergies between biomolecules and functional materials. Conjugation techniques have expanded to match an evolving materials discovery landscape, fueling a new wave of bioconjugates. Despite the breadth of conjugate literature, most reviews describe common and relatively simple substrates such as metal nanoparticles or polymers. This review therefore centers around novel materials including biological (e.g., viral capsids, live cells), hybrid (e.g., gold-decorated nanoparticles, covalent-organic frameworks), and synthetic (e.g., piezoelectrics, upconverting nanoparticles) substrates. Applications in cancer and viral therapy, tissue engineering, optogenetics, antimicrobials, diagnostics, advanced imaging, and related topics are explored, revealing trends in conjugation approach. This review also compares characterization techniques used to confirm and optimize conjugation before offering perspectives on the future of the field. By shedding light on the latest materials, applications, and analytical methods, we hope to empower researchers to harness bioconjugation for transformative medical innovations.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e00303"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Bioconjugate Materials: Synthesis, Characterization and Medical Applications.\",\"authors\":\"Ellie Martin, Sean P Doidge, Eiman Aleem, Suela Kellici, Steven Dunn, Claire Atkinson, Philip D Howes\",\"doi\":\"10.1002/adhm.202500303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioconjugation is a pillar of modern medicine, enabling the likes of targeted therapeutics and sensitive diagnostics by exploiting synergies between biomolecules and functional materials. Conjugation techniques have expanded to match an evolving materials discovery landscape, fueling a new wave of bioconjugates. Despite the breadth of conjugate literature, most reviews describe common and relatively simple substrates such as metal nanoparticles or polymers. This review therefore centers around novel materials including biological (e.g., viral capsids, live cells), hybrid (e.g., gold-decorated nanoparticles, covalent-organic frameworks), and synthetic (e.g., piezoelectrics, upconverting nanoparticles) substrates. Applications in cancer and viral therapy, tissue engineering, optogenetics, antimicrobials, diagnostics, advanced imaging, and related topics are explored, revealing trends in conjugation approach. This review also compares characterization techniques used to confirm and optimize conjugation before offering perspectives on the future of the field. By shedding light on the latest materials, applications, and analytical methods, we hope to empower researchers to harness bioconjugation for transformative medical innovations.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e00303\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202500303\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202500303","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Novel Bioconjugate Materials: Synthesis, Characterization and Medical Applications.
Bioconjugation is a pillar of modern medicine, enabling the likes of targeted therapeutics and sensitive diagnostics by exploiting synergies between biomolecules and functional materials. Conjugation techniques have expanded to match an evolving materials discovery landscape, fueling a new wave of bioconjugates. Despite the breadth of conjugate literature, most reviews describe common and relatively simple substrates such as metal nanoparticles or polymers. This review therefore centers around novel materials including biological (e.g., viral capsids, live cells), hybrid (e.g., gold-decorated nanoparticles, covalent-organic frameworks), and synthetic (e.g., piezoelectrics, upconverting nanoparticles) substrates. Applications in cancer and viral therapy, tissue engineering, optogenetics, antimicrobials, diagnostics, advanced imaging, and related topics are explored, revealing trends in conjugation approach. This review also compares characterization techniques used to confirm and optimize conjugation before offering perspectives on the future of the field. By shedding light on the latest materials, applications, and analytical methods, we hope to empower researchers to harness bioconjugation for transformative medical innovations.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.