{"title":"无机纳米酶在生物医学领域的研究进展与展望。","authors":"Siqi Zhan, Yan Fu, Hong Yu Yang, Doo Sung Lee","doi":"10.1039/d5bm01151e","DOIUrl":null,"url":null,"abstract":"<p><p>The development of inorganic nanozymes has revolutionized the field of nanotechnology by providing a new class of catalytic materials that exhibit enzyme-like activities. Compared with traditional natural enzymes, nanozymes have broad application prospects in the field of biomedicine due to their higher chemical stability, stronger environmental adaptability, and ability to maintain their activity under extreme conditions. To provide a comprehensive overview of the recent progress made in this field, herein, an overview of inorganic nanozymes for biomedical applications is provided. In this review, the structure, synthesis methods, and catalytic mechanism of inorganic nanozymes are summarized. Subsequently, the latest progress of various inorganic nanozymes for the applications in biomedicine is reviewed, including diagnostic applications, therapeutic applications and drug delivery systems. Then, the recent developments in the modification and multifunctionalization of novel inorganic nanozymes are discussed. Finally, the challenges and prospects of inorganic nanozymes in the field of biomedicine are highlighted and pointed out. We hope that this timely review can further advance this promising field.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent developments and prospects of inorganic nanozymes for biomedical applications.\",\"authors\":\"Siqi Zhan, Yan Fu, Hong Yu Yang, Doo Sung Lee\",\"doi\":\"10.1039/d5bm01151e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of inorganic nanozymes has revolutionized the field of nanotechnology by providing a new class of catalytic materials that exhibit enzyme-like activities. Compared with traditional natural enzymes, nanozymes have broad application prospects in the field of biomedicine due to their higher chemical stability, stronger environmental adaptability, and ability to maintain their activity under extreme conditions. To provide a comprehensive overview of the recent progress made in this field, herein, an overview of inorganic nanozymes for biomedical applications is provided. In this review, the structure, synthesis methods, and catalytic mechanism of inorganic nanozymes are summarized. Subsequently, the latest progress of various inorganic nanozymes for the applications in biomedicine is reviewed, including diagnostic applications, therapeutic applications and drug delivery systems. Then, the recent developments in the modification and multifunctionalization of novel inorganic nanozymes are discussed. Finally, the challenges and prospects of inorganic nanozymes in the field of biomedicine are highlighted and pointed out. We hope that this timely review can further advance this promising field.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm01151e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm01151e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recent developments and prospects of inorganic nanozymes for biomedical applications.
The development of inorganic nanozymes has revolutionized the field of nanotechnology by providing a new class of catalytic materials that exhibit enzyme-like activities. Compared with traditional natural enzymes, nanozymes have broad application prospects in the field of biomedicine due to their higher chemical stability, stronger environmental adaptability, and ability to maintain their activity under extreme conditions. To provide a comprehensive overview of the recent progress made in this field, herein, an overview of inorganic nanozymes for biomedical applications is provided. In this review, the structure, synthesis methods, and catalytic mechanism of inorganic nanozymes are summarized. Subsequently, the latest progress of various inorganic nanozymes for the applications in biomedicine is reviewed, including diagnostic applications, therapeutic applications and drug delivery systems. Then, the recent developments in the modification and multifunctionalization of novel inorganic nanozymes are discussed. Finally, the challenges and prospects of inorganic nanozymes in the field of biomedicine are highlighted and pointed out. We hope that this timely review can further advance this promising field.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.