快速发现具有纳米结构表面的抗菌合金的色谱区映射。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiu-Yu Zhao, Yu-Ying Liu, Li-Wei Hu, Hong-Xi Duan, Ming-Xing Li, Yan-Hui Liu, Jing Jiang, Zhen Lu, Wei-Hua Wang
{"title":"快速发现具有纳米结构表面的抗菌合金的色谱区映射。","authors":"Qiu-Yu Zhao, Yu-Ying Liu, Li-Wei Hu, Hong-Xi Duan, Ming-Xing Li, Yan-Hui Liu, Jing Jiang, Zhen Lu, Wei-Hua Wang","doi":"10.1002/advs.202513454","DOIUrl":null,"url":null,"abstract":"<p><p>Addressing antibiotic-resistant bacteria requires the efficient development of antibiotic-free antimicrobial materials. Herein, a high-throughput parallel chromatic-zone screening strategy is developed that enables the simultaneous screening of composition and surface structure, thereby optimizing antimicrobial performance. As an example, a MgCuPdGd alloy library with diverse compositions and nanostructures, consisting of 229 samples with continuous compositional gradients and varied nanostructured morphologies is constructed by integrating magnetron co-sputtering and chemical dealloying. The dealloyed samples exhibit distinct chromatic zones-red, yellow, and green-each associated with unique compositional and microstructural features. Among these regions, the red Cu-rich region demonstrates the most outstanding antibacterial performance, achieving a 95% reduction of viable Staphylococcus aureus (S. aureus). Comprehensive characterization confirms that the superior antimicrobial efficiency originates from the synergistic contribution of the CuPd alloy and the optimized nanostructure. Furthermore, the observed correlation among surface color, composition, morphology, and antibacterial performance highlights the predictive capability of the chromatic-zone screening approach, thereby reducing characterization requirements by 90% and enabling morphology and performance estimation across large material libraries. This work not only offers a rapid and cost-effective strategy for identifying antimicrobial materials but also provides a versatile platform adaptable to the development of functional materials for broader biomedical and environmental applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e13454"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatic-Zone Mapping for Rapid Discovery of Antibacterial Alloys with Nanostructured Surfaces.\",\"authors\":\"Qiu-Yu Zhao, Yu-Ying Liu, Li-Wei Hu, Hong-Xi Duan, Ming-Xing Li, Yan-Hui Liu, Jing Jiang, Zhen Lu, Wei-Hua Wang\",\"doi\":\"10.1002/advs.202513454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Addressing antibiotic-resistant bacteria requires the efficient development of antibiotic-free antimicrobial materials. Herein, a high-throughput parallel chromatic-zone screening strategy is developed that enables the simultaneous screening of composition and surface structure, thereby optimizing antimicrobial performance. As an example, a MgCuPdGd alloy library with diverse compositions and nanostructures, consisting of 229 samples with continuous compositional gradients and varied nanostructured morphologies is constructed by integrating magnetron co-sputtering and chemical dealloying. The dealloyed samples exhibit distinct chromatic zones-red, yellow, and green-each associated with unique compositional and microstructural features. Among these regions, the red Cu-rich region demonstrates the most outstanding antibacterial performance, achieving a 95% reduction of viable Staphylococcus aureus (S. aureus). Comprehensive characterization confirms that the superior antimicrobial efficiency originates from the synergistic contribution of the CuPd alloy and the optimized nanostructure. Furthermore, the observed correlation among surface color, composition, morphology, and antibacterial performance highlights the predictive capability of the chromatic-zone screening approach, thereby reducing characterization requirements by 90% and enabling morphology and performance estimation across large material libraries. This work not only offers a rapid and cost-effective strategy for identifying antimicrobial materials but also provides a versatile platform adaptable to the development of functional materials for broader biomedical and environmental applications.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e13454\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202513454\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202513454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

解决抗生素耐药细菌需要高效开发无抗生素抗菌材料。本文开发了一种高通量平行色谱区筛选策略,可以同时筛选成分和表面结构,从而优化抗菌性能。以MgCuPdGd合金为例,采用磁控共溅射和化学合金化相结合的方法,构建了具有不同成分和纳米结构的MgCuPdGd合金库,该库由229个具有连续成分梯度和不同纳米结构形貌的样品组成。合金样品呈现出明显的色带——红、黄、绿——每个色带都与独特的成分和微观结构特征相关。在这些区域中,红色富铜区域的抗菌性能最为突出,金黄色葡萄球菌(S. aureus)的存活率降低了95%。综合表征证实了CuPd合金与优化后的纳米结构的协同作用。此外,观察到的表面颜色、组成、形态和抗菌性能之间的相关性突出了彩色区筛选方法的预测能力,从而减少了90%的表征要求,并使大型材料库的形态和性能评估成为可能。这项工作不仅为鉴定抗菌材料提供了一种快速和具有成本效益的策略,而且为更广泛的生物医学和环境应用提供了一个适应功能材料开发的多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chromatic-Zone Mapping for Rapid Discovery of Antibacterial Alloys with Nanostructured Surfaces.

Addressing antibiotic-resistant bacteria requires the efficient development of antibiotic-free antimicrobial materials. Herein, a high-throughput parallel chromatic-zone screening strategy is developed that enables the simultaneous screening of composition and surface structure, thereby optimizing antimicrobial performance. As an example, a MgCuPdGd alloy library with diverse compositions and nanostructures, consisting of 229 samples with continuous compositional gradients and varied nanostructured morphologies is constructed by integrating magnetron co-sputtering and chemical dealloying. The dealloyed samples exhibit distinct chromatic zones-red, yellow, and green-each associated with unique compositional and microstructural features. Among these regions, the red Cu-rich region demonstrates the most outstanding antibacterial performance, achieving a 95% reduction of viable Staphylococcus aureus (S. aureus). Comprehensive characterization confirms that the superior antimicrobial efficiency originates from the synergistic contribution of the CuPd alloy and the optimized nanostructure. Furthermore, the observed correlation among surface color, composition, morphology, and antibacterial performance highlights the predictive capability of the chromatic-zone screening approach, thereby reducing characterization requirements by 90% and enabling morphology and performance estimation across large material libraries. This work not only offers a rapid and cost-effective strategy for identifying antimicrobial materials but also provides a versatile platform adaptable to the development of functional materials for broader biomedical and environmental applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信