氨基纤维素纳米纤维生物材料平台的可持续合成

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaochao Shi, Jian Zhang, Weixin Guan, Cong Li, Wenshuai Chen, Guihua Yu, Haipeng Yu
{"title":"氨基纤维素纳米纤维生物材料平台的可持续合成","authors":"Xiaochao Shi,&nbsp;Jian Zhang,&nbsp;Weixin Guan,&nbsp;Cong Li,&nbsp;Wenshuai Chen,&nbsp;Guihua Yu,&nbsp;Haipeng Yu","doi":"10.1126/sciadv.adx4556","DOIUrl":null,"url":null,"abstract":"<div >The increasing demand for sustainable materials has driven interest in harnessing renewable resources to develop advanced biomaterials. Cellulose nanofibers, derived from abundant natural reserves, offer excellent mechanical strength and thermal stability but lack inherent biofunctionality. This study presents a method that is green, cost-effective, and scalable to synthesize amino-cellulose nanofibers (A-CNFs) by grafting carboxyl groups and thereon amino groups onto cellulose, followed by ultrasonic nanofibrillation, resulting in ultrafine, lengthy A-CNF with enhanced mechanical properties, biocompatibility, and antibacterial activity. Comparative analyses demonstrate that A-CNF scaffolds exhibit favorable biostability, pore connectivity, and mechanical integrity in tissue engineering applications. Biological assessments further indicate improved cell viability and reduced hemolysis, underscoring A-CNF’s potential as robust, biocompatible, and sustainable material platforms for biomedical use.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 43","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx4556","citationCount":"0","resultStr":"{\"title\":\"Sustainable synthesis of amino-cellulose nanofibers for biomaterial platforms\",\"authors\":\"Xiaochao Shi,&nbsp;Jian Zhang,&nbsp;Weixin Guan,&nbsp;Cong Li,&nbsp;Wenshuai Chen,&nbsp;Guihua Yu,&nbsp;Haipeng Yu\",\"doi\":\"10.1126/sciadv.adx4556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The increasing demand for sustainable materials has driven interest in harnessing renewable resources to develop advanced biomaterials. Cellulose nanofibers, derived from abundant natural reserves, offer excellent mechanical strength and thermal stability but lack inherent biofunctionality. This study presents a method that is green, cost-effective, and scalable to synthesize amino-cellulose nanofibers (A-CNFs) by grafting carboxyl groups and thereon amino groups onto cellulose, followed by ultrasonic nanofibrillation, resulting in ultrafine, lengthy A-CNF with enhanced mechanical properties, biocompatibility, and antibacterial activity. Comparative analyses demonstrate that A-CNF scaffolds exhibit favorable biostability, pore connectivity, and mechanical integrity in tissue engineering applications. Biological assessments further indicate improved cell viability and reduced hemolysis, underscoring A-CNF’s potential as robust, biocompatible, and sustainable material platforms for biomedical use.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 43\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx4556\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx4556\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx4556","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对可持续材料日益增长的需求推动了利用可再生资源开发先进生物材料的兴趣。纤维素纳米纤维来源于丰富的自然资源,具有优异的机械强度和热稳定性,但缺乏固有的生物功能。本研究提出了一种绿色、经济、可扩展的合成氨基纤维素纳米纤维(a - cnfs)的方法,通过将羧基及其氨基接枝到纤维素上,然后进行超声纳米颤动,得到超细、长长度的a - cnf,具有增强的机械性能、生物相容性和抗菌活性。对比分析表明,A-CNF支架在组织工程应用中具有良好的生物稳定性、孔隙连通性和机械完整性。生物学评估进一步表明,A-CNF可提高细胞活力,减少溶血,强调其作为生物医学用途的强大、生物相容性和可持续的材料平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable synthesis of amino-cellulose nanofibers for biomaterial platforms

Sustainable synthesis of amino-cellulose nanofibers for biomaterial platforms
The increasing demand for sustainable materials has driven interest in harnessing renewable resources to develop advanced biomaterials. Cellulose nanofibers, derived from abundant natural reserves, offer excellent mechanical strength and thermal stability but lack inherent biofunctionality. This study presents a method that is green, cost-effective, and scalable to synthesize amino-cellulose nanofibers (A-CNFs) by grafting carboxyl groups and thereon amino groups onto cellulose, followed by ultrasonic nanofibrillation, resulting in ultrafine, lengthy A-CNF with enhanced mechanical properties, biocompatibility, and antibacterial activity. Comparative analyses demonstrate that A-CNF scaffolds exhibit favorable biostability, pore connectivity, and mechanical integrity in tissue engineering applications. Biological assessments further indicate improved cell viability and reduced hemolysis, underscoring A-CNF’s potential as robust, biocompatible, and sustainable material platforms for biomedical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信