基于多ETL层的高性能ag2mgsnse4硫系太阳能电池的设计与仿真研究

IF 4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Md. Saiful Islam Shaon, Foysal Arman Jonaied, Jibon Krisha Modak, Md. Tarekuzzaman, Ahmet Sait Alali, Beddiaf Zaidi, Ahmad Muhammad, Md. Rasheduzzaman, Md. Zahid Hasan
{"title":"基于多ETL层的高性能ag2mgsnse4硫系太阳能电池的设计与仿真研究","authors":"Md. Saiful Islam Shaon,&nbsp;Foysal Arman Jonaied,&nbsp;Jibon Krisha Modak,&nbsp;Md. Tarekuzzaman,&nbsp;Ahmet Sait Alali,&nbsp;Beddiaf Zaidi,&nbsp;Ahmad Muhammad,&nbsp;Md. Rasheduzzaman,&nbsp;Md. Zahid Hasan","doi":"10.1007/s11082-025-08521-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the results of a numerical simulation analysis conducted using the SCAPS-1D modelling tool on Ag<sub>2</sub>MgSnSe<sub>4</sub> solar cells, a novel quaternary chalcogenide material. The effects of the absorber layer’s thickness, doping density, defect density, and mobility on device performance have been thoroughly investigated and modified in this work. Here, aluminium and nickel make up the front and back contacts, respectively, and tin disulphide, tungsten disulphide, zinc oxide, and PCBM make up the electron transport layers. Cu<sub>2</sub>O is the HTL. Quantum efficiency (QE), generation-recombination rates, current-voltage density (J-V), capacitance, temperature, series and shunt resistances, and Mott-Schottky characteristics are the many other parameters studied. Cu<sub>2</sub>O was shown to be the most effective HTL for Ag<sub>2</sub>MgSnSe<sub>4</sub> out of the four ETLs used in this investigation. So, for SnS<sub>2</sub>, WS<sub>2</sub>, ZnO, and PCBM, the resulting power conversion efficiencies (PCEs) were 26.36%, 25.86%, 25.84%, and 25.80%, respectively. Solar cell designs based on quaternary chalcogenides may be optimized using the suggested technique.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extensive study on multiple ETL layers to design and simulation of high-performance Ag2MgSnSe4-based chalcogenide solar cells for photovoltaic applications\",\"authors\":\"Md. Saiful Islam Shaon,&nbsp;Foysal Arman Jonaied,&nbsp;Jibon Krisha Modak,&nbsp;Md. Tarekuzzaman,&nbsp;Ahmet Sait Alali,&nbsp;Beddiaf Zaidi,&nbsp;Ahmad Muhammad,&nbsp;Md. Rasheduzzaman,&nbsp;Md. Zahid Hasan\",\"doi\":\"10.1007/s11082-025-08521-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the results of a numerical simulation analysis conducted using the SCAPS-1D modelling tool on Ag<sub>2</sub>MgSnSe<sub>4</sub> solar cells, a novel quaternary chalcogenide material. The effects of the absorber layer’s thickness, doping density, defect density, and mobility on device performance have been thoroughly investigated and modified in this work. Here, aluminium and nickel make up the front and back contacts, respectively, and tin disulphide, tungsten disulphide, zinc oxide, and PCBM make up the electron transport layers. Cu<sub>2</sub>O is the HTL. Quantum efficiency (QE), generation-recombination rates, current-voltage density (J-V), capacitance, temperature, series and shunt resistances, and Mott-Schottky characteristics are the many other parameters studied. Cu<sub>2</sub>O was shown to be the most effective HTL for Ag<sub>2</sub>MgSnSe<sub>4</sub> out of the four ETLs used in this investigation. So, for SnS<sub>2</sub>, WS<sub>2</sub>, ZnO, and PCBM, the resulting power conversion efficiencies (PCEs) were 26.36%, 25.86%, 25.84%, and 25.80%, respectively. Solar cell designs based on quaternary chalcogenides may be optimized using the suggested technique.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 11\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08521-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08521-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用SCAPS-1D建模工具对新型季硫系材料Ag2MgSnSe4太阳能电池进行数值模拟分析的结果。本文对吸收层厚度、掺杂密度、缺陷密度和迁移率对器件性能的影响进行了深入的研究和修正。在这里,铝和镍分别构成前触点和后触点,二硫化锡、二硫化钨、氧化锌和多氯联苯构成电子传输层。Cu2O是html。量子效率(QE)、产生复合率、电流-电压密度(J-V)、电容、温度、串联和并联电阻以及莫特-肖特基特性是研究的许多其他参数。在本研究中使用的四种etl中,Cu2O被证明是Ag2MgSnSe4最有效的html。因此,对于SnS2, WS2, ZnO和PCBM,得到的功率转换效率(pce)分别为26.36%,25.86%,25.84%和25.80%。基于季硫族化合物的太阳能电池设计可以利用所建议的技术进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extensive study on multiple ETL layers to design and simulation of high-performance Ag2MgSnSe4-based chalcogenide solar cells for photovoltaic applications

This paper presents the results of a numerical simulation analysis conducted using the SCAPS-1D modelling tool on Ag2MgSnSe4 solar cells, a novel quaternary chalcogenide material. The effects of the absorber layer’s thickness, doping density, defect density, and mobility on device performance have been thoroughly investigated and modified in this work. Here, aluminium and nickel make up the front and back contacts, respectively, and tin disulphide, tungsten disulphide, zinc oxide, and PCBM make up the electron transport layers. Cu2O is the HTL. Quantum efficiency (QE), generation-recombination rates, current-voltage density (J-V), capacitance, temperature, series and shunt resistances, and Mott-Schottky characteristics are the many other parameters studied. Cu2O was shown to be the most effective HTL for Ag2MgSnSe4 out of the four ETLs used in this investigation. So, for SnS2, WS2, ZnO, and PCBM, the resulting power conversion efficiencies (PCEs) were 26.36%, 25.86%, 25.84%, and 25.80%, respectively. Solar cell designs based on quaternary chalcogenides may be optimized using the suggested technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信