基于enso的韩国冬季气温预报的局限性

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Seungwoo Yoo, Jieun Kim, Jinwon Kim, Chang-Hoi Ho
{"title":"基于enso的韩国冬季气温预报的局限性","authors":"Seungwoo Yoo,&nbsp;Jieun Kim,&nbsp;Jinwon Kim,&nbsp;Chang-Hoi Ho","doi":"10.1007/s13143-025-00419-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the statistical and dynamical relationship between the El Niño-Southern Oscillation (ENSO) and winter surface air temperature (SAT) in Korea, using station observations and reanalysis data from 1920 to 2023. Historical SAT records are compiled from 7, 14, and 60 stations for 1920–1959, 1960–1972, and 1973–2023, respectively. Despite the statistically significant correlation (<i>r</i> = 0.28) between the Niño 3.4 index and winter SAT in Korea, ENSO alone explains only a limited amount of interannual variability. Classifying the SAT anomalies according to the ENSO phase (i.e., warm for El Niño and cold for La Niña), the Niño 3.4 index yields binary-classification accuracy of 0.68; however, about half of the correctly classified anomalies fall within ±0.5 standard deviations from the climatological mean. Also, composite circulation patterns based on ENSO phases differ structurally from those associated with actual SAT anomalies. A multiple linear regression analysis reveals that mid- to high-latitude climate variables, such as the East Asian winter monsoon, western North Pacific (WNP) sea surface temperatures (SSTs), and the Arctic Oscillation, exhibit stronger and more stable associations with Korean winter SAT than ENSO. Especially WNP SSTs show the largest standardized regression coefficients (&gt; 5.0) to indicate their dominant role. This study suggests the need for integrated forecasting approaches that consider both the tropical and extratropical influences, rather than relying solely on ENSO signals for improving the accuracy of seasonal climate predictions and supporting adaptive risk management strategies for wintertime extremes in the Korean Peninsula.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"61 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-025-00419-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Limitations of ENSO-Based Prediction of Korean Winter Temperature\",\"authors\":\"Seungwoo Yoo,&nbsp;Jieun Kim,&nbsp;Jinwon Kim,&nbsp;Chang-Hoi Ho\",\"doi\":\"10.1007/s13143-025-00419-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the statistical and dynamical relationship between the El Niño-Southern Oscillation (ENSO) and winter surface air temperature (SAT) in Korea, using station observations and reanalysis data from 1920 to 2023. Historical SAT records are compiled from 7, 14, and 60 stations for 1920–1959, 1960–1972, and 1973–2023, respectively. Despite the statistically significant correlation (<i>r</i> = 0.28) between the Niño 3.4 index and winter SAT in Korea, ENSO alone explains only a limited amount of interannual variability. Classifying the SAT anomalies according to the ENSO phase (i.e., warm for El Niño and cold for La Niña), the Niño 3.4 index yields binary-classification accuracy of 0.68; however, about half of the correctly classified anomalies fall within ±0.5 standard deviations from the climatological mean. Also, composite circulation patterns based on ENSO phases differ structurally from those associated with actual SAT anomalies. A multiple linear regression analysis reveals that mid- to high-latitude climate variables, such as the East Asian winter monsoon, western North Pacific (WNP) sea surface temperatures (SSTs), and the Arctic Oscillation, exhibit stronger and more stable associations with Korean winter SAT than ENSO. Especially WNP SSTs show the largest standardized regression coefficients (&gt; 5.0) to indicate their dominant role. This study suggests the need for integrated forecasting approaches that consider both the tropical and extratropical influences, rather than relying solely on ENSO signals for improving the accuracy of seasonal climate predictions and supporting adaptive risk management strategies for wintertime extremes in the Korean Peninsula.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"61 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-025-00419-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-025-00419-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-025-00419-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用1920 ~ 2023年的台站观测资料和再分析资料,研究了厄尔尼诺Niño-Southern涛动(ENSO)与韩国冬季地面气温(SAT)的统计和动力关系。历史SAT记录分别由7、14和60个站点编制,分别为1920-1959年、1960-1972年和1973-2023年。尽管Niño 3.4指数与韩国冬季SAT之间存在统计学上显著的相关性(r = 0.28),但ENSO仅能解释有限的年际变化。根据ENSO相位对SAT异常进行分类(即El Niño为暖,La Niña为冷),Niño 3.4指数的二元分类精度为0.68;然而,在正确分类的异常中,约有一半落在气候平均值±0.5个标准差范围内。此外,基于ENSO相位的复合环流模式在结构上与实际SAT异常相关的环流模式不同。多元线性回归分析表明,东亚冬季风、北太平洋西部海温和北极涛动等中高纬度气候变量与韩国冬季SAT的相关性比ENSO更强、更稳定。特别是WNP海温的标准化回归系数最大(> 5.0),表明其主导作用。这项研究表明,需要综合考虑热带和温带影响的预报方法,而不是仅仅依靠ENSO信号来提高季节性气候预测的准确性,并支持针对朝鲜半岛冬季极端事件的适应性风险管理战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limitations of ENSO-Based Prediction of Korean Winter Temperature

This study investigates the statistical and dynamical relationship between the El Niño-Southern Oscillation (ENSO) and winter surface air temperature (SAT) in Korea, using station observations and reanalysis data from 1920 to 2023. Historical SAT records are compiled from 7, 14, and 60 stations for 1920–1959, 1960–1972, and 1973–2023, respectively. Despite the statistically significant correlation (r = 0.28) between the Niño 3.4 index and winter SAT in Korea, ENSO alone explains only a limited amount of interannual variability. Classifying the SAT anomalies according to the ENSO phase (i.e., warm for El Niño and cold for La Niña), the Niño 3.4 index yields binary-classification accuracy of 0.68; however, about half of the correctly classified anomalies fall within ±0.5 standard deviations from the climatological mean. Also, composite circulation patterns based on ENSO phases differ structurally from those associated with actual SAT anomalies. A multiple linear regression analysis reveals that mid- to high-latitude climate variables, such as the East Asian winter monsoon, western North Pacific (WNP) sea surface temperatures (SSTs), and the Arctic Oscillation, exhibit stronger and more stable associations with Korean winter SAT than ENSO. Especially WNP SSTs show the largest standardized regression coefficients (> 5.0) to indicate their dominant role. This study suggests the need for integrated forecasting approaches that consider both the tropical and extratropical influences, rather than relying solely on ENSO signals for improving the accuracy of seasonal climate predictions and supporting adaptive risk management strategies for wintertime extremes in the Korean Peninsula.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信