Amirkoushyar Ziabari, Mohamed Hakim Bedhief, Obaidullah Rahman, Singanallur Venkatakrishnan, Paul Brackman, Peter Katuch
{"title":"结合深度学习和散射控制的高通量x射线CT大型铸造金属构件无损表征","authors":"Amirkoushyar Ziabari, Mohamed Hakim Bedhief, Obaidullah Rahman, Singanallur Venkatakrishnan, Paul Brackman, Peter Katuch","doi":"10.1007/s10921-025-01228-3","DOIUrl":null,"url":null,"abstract":"<div><p>X-ray computed tomography (XCT) is essential for nondestructive evaluation and quality control of large-scale metal components. XCT imaging, however, faces significant challenges from metal artifacts, particularly those caused by Compton scattering, which degrade image quality and obscure critical details. Hardware-based solutions (e.g. <i>scatterControl</i>) offer advancements by intercepting scattered photons and reducing artifacts, but they can be time-consuming and require additional processing. Here, we propose modifying and leveraging a novel deep learning (DL) framework, Simurgh, to enhance and accelerate scatter correction in XCT. By combining <i>scatterControl</i> with DL-based artifact removal, we demonstrate significant reduction in scan time while producing high-quality reconstructions. Through extensive evaluation on industrial XCT data, we show that our methods reduce scan time by up to more than 10<span>\\(\\times \\)</span> while preserving flaw detectability. Quantitative analysis across multiple segmentation techniques confirms that Simurgh-based reconstructions consistently outperform traditional Feldkamp-Davis-Kress, model-based iterative reconstruction, and commercial DL models in both pixel-level and task-specific evaluations, enabling scalable, high-throughput XCT workflows for characterization of large scale components in applications such as casting and metal additive manufacturing.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01228-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining Deep Learning and scatterControl for High-Throughput X-ray CT Based Non-Destructive Characterization of Large-Scale Casted Metallic Components\",\"authors\":\"Amirkoushyar Ziabari, Mohamed Hakim Bedhief, Obaidullah Rahman, Singanallur Venkatakrishnan, Paul Brackman, Peter Katuch\",\"doi\":\"10.1007/s10921-025-01228-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>X-ray computed tomography (XCT) is essential for nondestructive evaluation and quality control of large-scale metal components. XCT imaging, however, faces significant challenges from metal artifacts, particularly those caused by Compton scattering, which degrade image quality and obscure critical details. Hardware-based solutions (e.g. <i>scatterControl</i>) offer advancements by intercepting scattered photons and reducing artifacts, but they can be time-consuming and require additional processing. Here, we propose modifying and leveraging a novel deep learning (DL) framework, Simurgh, to enhance and accelerate scatter correction in XCT. By combining <i>scatterControl</i> with DL-based artifact removal, we demonstrate significant reduction in scan time while producing high-quality reconstructions. Through extensive evaluation on industrial XCT data, we show that our methods reduce scan time by up to more than 10<span>\\\\(\\\\times \\\\)</span> while preserving flaw detectability. Quantitative analysis across multiple segmentation techniques confirms that Simurgh-based reconstructions consistently outperform traditional Feldkamp-Davis-Kress, model-based iterative reconstruction, and commercial DL models in both pixel-level and task-specific evaluations, enabling scalable, high-throughput XCT workflows for characterization of large scale components in applications such as casting and metal additive manufacturing.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10921-025-01228-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-025-01228-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01228-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Combining Deep Learning and scatterControl for High-Throughput X-ray CT Based Non-Destructive Characterization of Large-Scale Casted Metallic Components
X-ray computed tomography (XCT) is essential for nondestructive evaluation and quality control of large-scale metal components. XCT imaging, however, faces significant challenges from metal artifacts, particularly those caused by Compton scattering, which degrade image quality and obscure critical details. Hardware-based solutions (e.g. scatterControl) offer advancements by intercepting scattered photons and reducing artifacts, but they can be time-consuming and require additional processing. Here, we propose modifying and leveraging a novel deep learning (DL) framework, Simurgh, to enhance and accelerate scatter correction in XCT. By combining scatterControl with DL-based artifact removal, we demonstrate significant reduction in scan time while producing high-quality reconstructions. Through extensive evaluation on industrial XCT data, we show that our methods reduce scan time by up to more than 10\(\times \) while preserving flaw detectability. Quantitative analysis across multiple segmentation techniques confirms that Simurgh-based reconstructions consistently outperform traditional Feldkamp-Davis-Kress, model-based iterative reconstruction, and commercial DL models in both pixel-level and task-specific evaluations, enabling scalable, high-throughput XCT workflows for characterization of large scale components in applications such as casting and metal additive manufacturing.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.